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1 Introduction

The Biden Administration bills the Inflation Reduction Act (IRA) as the “most ambitious in-

vestment in combating the climate crisis in world history” (White House 2023). In addition to

addressing climate change, the Administration designed the IRA to protect domestic manufactur-

ing, secure supply chains, and achieve political sustainability across elections. To achieve these

objectives, the IRA relies heavily on uniform tax credits for low-carbon technologies made in the

US and allied countries. Tax credits for electric vehicles (EVs) represent a central component of

the IRA. Bistline, Mehrotra and Wolfram (2023) and the Committee for a Responsible Federal

Budget (2023) project that the EV credits may cost the US government from $70 to $390 billion

over a decade, representing up to half of the IRA’s projected total tax credit spending. The IRA,

however, has a cloudy future—House Speaker Mike Johnson describes it as “terribly harmful to

the economy,” though he anticipates revision using a “scalpel and not a sledgehammer” since he

supports some parts. Some progressives demand an “IRA 2.0” to expand its investments, though

the 2024 election of Donald Trump and Republican legislators makes this unlikely in the short run

(Wilkins 2024; Worland 2024).

The IRA’s EV credits are one example of a larger set of vehicle electrification policies, which

encourage substitution from gasoline vehicles (GVs) to EVs but less often distinguish among EVs.

Across the US, China, Japan, the EU, and elsewhere, this effort includes EV purchase subsidies,

sales targets, free charging, carpool lane access, and discounted tolls. Policy has long reflected

heterogeneous externalities within GVs, but the IRA and many EV policies abstract from hetero-

geneous externalities within EVs. Switching from a Prius GV to a Cybertruck or Hummer EV, for

example, supports vehicle electrification but may dramatically increase externalities.

The EV tax credits also offer a fascinating case study of combining climate and industrial policy,

and more broadly using trade policy to benefit the environment. To encourage a transition to EVs

while reducing China’s dominance of manufacturing and battery supply chains, the IRA restricts

tax credits for purchased EVs to vehicles assembled in North America that contain a sufficiently

large share of battery inputs from the US or allied countries (excluding China). As we discuss,

the IRA substantially prioritizes US production, part of a longstanding “Buy American” federal

policy goal that the Biden Administration has expanded. Equally generous credits to companies

for leasing EVs lack these restrictions, generating a “leasing loophole.” Yablon (2023) summarizes

tensions this has created:

Many of the US’s allies like Japan, Canada, and especially the European Union have

not been all-in. They see the Biden administration’s signature accomplishments – such

as the Inflation Reduction Act (IRA) – less as long-awaited efforts to finally make good

on promises of climate action and more as a threat to the ability of places like Europe

to attract investment themselves. . . .

After decades of pleading with America to finally take action on issues such as climate,

why are our closest partners so annoyed at us now that we’re actually doing what they
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asked?

French President Emmanuel Macron, for example, lauded the IRA’s “common objective” in transi-

tioning to green energy and lamented its “super aggressive” stance towards European Union firms

(France 24 2022; Rose and Mason 2022).

Motivated by these rapid policy developments, we use event study analyses and an equilibrium

model of new vehicle supply and demand to study the IRA’s EV tax credits, with three purposes.

First, we assess the EV credits’ impacts, including their distributional effects. Second, we use this

setting to learn about optimal policy design for EVs with heterogeneous externalities. Third, we

quantify tradeoffs that this case study of green industrial policy creates between trade and the envi-

ronment, and between domestic and foreign interests. The EV credits combine a non-cooperative,

national welfare perspective on producer surplus that encourages profit shifting, together with more

cooperative investment in the global public good of CO2 mitigation that benefits the planet.

Our analysis exploits a uniquely extensive combination of vehicle market data. We combine

proprietary transaction-level dealership microdata from Cox Automotive, monthly national new

vehicle registrations by submodel from Experian, aggregate supply conditions data from Edmunds,

second choice survey data from Strategic Vision, registration microdata from the two states with the

largest population and GDP (California and Texas), archival web scraping records for Tesla, original

surveys we conducted with over 250 dealerships, administrative air pollution measurements for new

GVs, and administrative credit eligibility from the US Treasury Department, plus more standard

data sources. These records allow a deeper analysis of clean vehicle tax credits, heterogeneity in

EV externalities, and this combination of trade and environmental policy than has previously been

possible.

We begin by describing externalities within EV and within GV submodels. For each submodel,

we calculate CO2 emissions from manufacturing and scrap (“cradle to grave”); CO2 and local air

pollution emissions from driving; fatal accidents; and fiscal externalities from explicit or implicit

taxes on gasoline and electricity. Our calculations reflect typical assumptions such as a $241 social

cost of carbon (US EPA 2023a) and other marginal damages building on Holland et al. (2016).

We find comparable heterogeneity within EV submodels as within GV submodels, and substantial

overlap in the EV versus GV externality distributions. This striking finding conflicts with the

prevailing approach of interpreting substitution from GVs to EVs (vehicle electrification) as the

critical policy objective to decrease externalities, without focusing on which EVs consumers choose.

For example, the 90th percentile submodel among EVs generates externalities of $24,300 over its

lifetime, while the 10th percentile submodel among EVs generates $12,100 in externalities; the

comparable statistics for GVs are $27,100 and $14,000.
To evaluate the EV tax credits’ economic incidence, we use event study analyses to estimate

how new vehicle prices changed as EV credit eligibility changed. Under Section 30D of the US

tax code, qualifying EV buyers may receive $7,500 income tax credits for buying eligible vehicles.

EVs assembled outside of North America lost eligibility in August 2022. Many other vehicles lost

eligibility in April 2023 with the implementation of battery sourcing requirements. Although supply

2



chain constraints potentially affected price responses in August 2022, our industry data and dealer

survey indicate more typical supply conditions by Spring and Summer 2023 for both EVs and GVs.

The event study analyses find no statistically significant purchase price changes in the months after

vehicles lost eligibility, and our confidence intervals rule out price decreases of more than about

$1,000. Because consumers received the tax credit post-purchase through individual income tax

filings, this limited purchase price decrease implies that much of the credits’ economic incidence

was on consumers.

Our event study analysis also evaluates how the IRA EV credits affect purchase mode. Under

the new Section 45W of the tax code, companies leasing vehicles could claim corporate income tax

credits for leasing any EV, starting in January 2023. We measure lease prices as the present value

of the down payment, monthly payments, and residual. We find that lease prices dropped relative

to purchase prices in 2023. This finding implies substantial pass-through of the 45W credits to

consumers who leased EVs. Driven by the decreased price of leasing relative to buying, our event

study analysis also finds that EV markets shifted significantly toward leasing throughout 2023. In

December 2022, leasing accounted for 15 percent of new EV registrations. By December 2023, this

share had risen to 30 percent. Vehicles assembled outside North America, that lost 30D purchase

credit eligibility in August 2022, had shifts to leasing of roughly 50 percentage points.

To study counterfactual scenarios and perform welfare analysis, we turn to an equilibrium

model of vehicle supply and demand. The model uses a typical nested logit demand system with

an exogenous choice set, constant marginal costs, and static Nash-Bertrand pricing. This framework

is appropriate for predicting effects over a several-year horizon: long enough to ignore temporary

inventory constraints, but short enough to ignore supply chain adjustments, entry of new models,

or learning-by-doing effects. We design the demand system to have flexible substitution patterns

on the four margins most important for evaluating EV tax credits: substitution across vehicle

models, from buying to leasing, across vehicle classes, and from EVs to GVs. We calibrate the

substitution parameters to match empirical moments from our event studies, second choice data,

and price sensitivity estimates from Grieco, Murry and Yurukoglu (2024), although we also report

results under alternative assumptions.

We find that replacing the IRA EV credits with no credits or pre-IRA credits has complex market

and welfare effects. Repealing the IRA EV credits decreases EV registrations by 8 to 27 percent

under pre-IRA or no credit counterfactuals, respectively, and decreases EV leasing by more than

half. Repealing the IRA EV credits barely affects foreign firms but decreases annual registrations

of US firms’ EVs by 37 percent, or 310,000 annually. The IRA spends $23,000 to $32,000 per

incremental EV sold, since only 23 to 33 percent of credits are marginal (i.e., additional). From the

US planner’s perspective, switching from no EV credits to the IRA’s credits has a marginal value

of public funds (MVPF) of 1 to 1.2, depending whether one uses the domestic or global social cost

of carbon. But replacing pre-IRA EV credits with the IRA EV credits has an MVPF of 1.9 to 2.1,

which is higher partly since pre-IRA policy mostly subsidized foreign vehicles. We also find that an

IRA repeal pits trade versus the environment. Repealing the IRA credits increases foreign firms’
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sales and foreign producer surplus, due to the IRA’s domestic and allied content restrictions. But

repealing IRA credits increases CO2 emissions.

We then compare the IRA EV tax credits to counterfactuals with tighter or looser trade restric-

tions, which largely close the leasing loophole. The leasing loophole itself performs poorly, with

an MVPF of 0.35 to 0.85 from either the US or global planner’s perspective. The leasing loophole

is not a cost-effective way to relax trade restrictions because, given our estimated substitution

patterns, many people who lease foreign EVs to claim IRA incentives would have either bought

a domestic EV or an unsubsidized foreign EV instead if the leasing option had not been allowed.

Thus, the leasing loophole transfers substantial producer surplus to foreign firms while generating

little incremental EV takeup.

We also compare the IRA EV tax credits to alternative policies that maximize total surplus

in our framework, while holding the Section 30D credit eligibility list fixed. We show formally

that the constrained optimal uniform or differentiated subsidy equals the sum of three terms: the

net distortion (markup minus negative externality); an adjustment for indirect substitution from

non-subsidized vehicles weighted by those vehicles’ net distortion; and profit-shifting away from

foreign firms. We obtain an analogous result for optimal uniform subsidies, with demand-response

weighted averages across models of the above three terms.

We find that first-best policy would tax all vehicles, because we estimate that all vehicles have

negative externalities larger than their markups. However, if GVs cannot be taxed, the sign of

optimal policy reverses and it becomes optimal to subsidize EVs to induce substitution from GVs,

which on average have higher externalities. Under the restriction of using a uniform EV subsidy for

both purchases and leases, we find that a uniform EV subsidy of $6,355 maximizes US total surplus

if the government can raise funds via non-distortionary lump-sum taxation. The net distortion

accounts for 36 percent of the optimal subsidy, the indirect substitution for 14 percent, and the

profit shifting component for 50 percent. The optimal uniform subsidy in our model is close to the

IRA’s actual uniform subsidy, although imposing that optimal uniform subsidy instead of the IRA

EV tax credits increases US total surplus by around $1 billion annually. However, when accounting

for the deadweight loss of taxation (i.e., assuming a marginal cost of public funds of 1.4) we find

an optimal uniform subsidy much further below the IRA’s actual value.

Our estimated externalities vary substantially across EV submodels due to heterogeneity in EV

weight and electricity use per mile. Thus, we find that model-specific differentiated EV subsidies

reduce deadweight loss relative to a uniform EV subsidy, increasing US surplus by $1 to $2.5 billion

annually. Compared to no subsidies, uniform subsidies achieve 57 percent of the domestic welfare

benefit of subsidies differentiated across EVs. Thus, we find that the IRA credits leave considerable

social value on the table by using uniform subsidies for vehicles with different externalities.

Our paper has several important limitations. Whereas our analyses describe the short to-

medium run outcomes, they do not describe effects of EV tax credits over the long-term, when

automakers might adjust supply chains, develop new models, or benefit from learning-by-doing.

Such long-term effects were important motivations for the IRA. We also do not account for US
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trading partners’ potential retaliatory trade restrictions. Our short- to medium-run analyses are

still important given ten-year budgeting horizons in the US Congress, a two- to six-year election

cycle, the rapid developments in EV policies and investments, and prospective changes to the

IRA under the incoming Trump Administration. Additionally, while we measure externalities

carefully and discuss the associated assumptions, our results reflect our externality assumptions.

For example, we do not account for decreased noise externalities from EVs, or additional pollution

emissions from the tire wear caused by heavier vehicles, although we do include other weight-related

externalities.

We contribute to a nascent literature studying the IRA, and to analyses of prior US tax credits

for clean vehicles, by providing the first ex post empirical microeconomic welfare evaluation of

the IRA’s EV tax credits. These credits are one of the most significant environmental policies in

US history and a leading example of US trade and environmental policy. This literature includes

policy overviews (Bown 2023; Buckberg 2023), reduced-form and structural evaluations of previous

state and federal credits (Chandra et al. 2010; Sallee 2011; Gallagher and Muehlegger 2011; Jenn,

Azevedo and Ferreira 2013; Jenn, Springel and Gopal 2018; Clinton and Steinberg 2019; Sheldon

and Dua 2019; Xing et al. 2021; Muehlegger and Rapson 2022; Lohawala 2023), and ex ante

evaluations of the IRA credits (Bistline, Mehrotra and Wolfram 2023; Cole et al. 2023; Slowik et al.

2023; Hahn et al. 2024). Four working papers model long-run benefits: Linn (2022) models US EV

credits in a model with endogenous entry of new vehicles, Head et al. (2024) model reallocation of

EV supply chains in response to the IRA, and Barwick et al. (2023) and Barwick et al. (2024) focus

on the effects of Chinese EV tax credits in a model with learning-by-doing. Cox and Acosta (2023)

and Bombardini et al. (2024) study general costs of Buy American provisions in federal procurement.

Our estimate of subsidy additionality echoes recent estimates of environmental policy additionality

in disparate settings (Arkolakis and Walsh 2023; Aspelund and Russo 2024; Chen et al. 2024). More

broadly, our timely retrospective analysis, two years after the IRA’s passage and amid discussions

of its potential repeal, lightly echoes timely retrospective analysis of the Trump tariffs and COVID

lockdowns (Fajgelbaum et al. 2020; Flaaen et al. 2020; Chetty et al. 2024)

We also provide the first theoretical and empirical analysis of profit shifting and the environment.

We describe optimal domestic subsidies or taxes for differentiated, traded products in concentrated

industries, then empirically calculate these subsidies and decompose them into components due to

profit shifting versus distortions. We also distinguish the role of profit shifting in welfare analysis of

the actual IRA EV credits and contrast welfare consequences from the perspective of global versus

national planners, for foreign and domestic producer surplus versus environmental externalities,

and for local versus global externalities. Unilateral trade policy in imperfectly competitive markets

can transfer surplus from foreign to domestic firms (Brander and Spencer 1981, 1984; Venables

1985; Bagwell and Staiger 2012). Quantitative models of trade and the environment typically as-

sume perfect competition (Costinot et al. 2016; Larch and Wanner 2017; Shapiro 2021; Kortum

and Weisbach 2021; Caliendo et al. 2024); trade-environment models with monopolistic competi-

tion do not directly analyze profit shifting (Nordhaus 2015; Shapiro and Walker 2018; Farrokhi and
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Lashkaripour 2024), though Levaggi and Panteghini (2023) provide results in a simple model of

multinationals. Overviews of the trade-environment literature have little discussion of profit shift-

ing (Copeland and Taylor 2003; Cherniwchan et al. 2017; Copeland et al. 2022; Balboni and Shapiro

2024; Desmet and Rossi-Hansberg 2024). Optimal environmental taxation in concentrated indus-

tries differs from the Pigouvian benchmark due to market power (Buchanan 1969). A few studies

analyze specific tradable industries (Fowlie, Reguant and Ryan 2016; Ganapati, Shapiro and Walker

2020; Hsiao 2024), without focus on profit shifting from foreign to home. Profit shifting may es-

pecially matter for trade-environment issues because polluting industries have high levels of trade

exposure plus returns to scale, shipping costs, capital intensity, and other drivers of concentration

(Copeland, Shapiro and Taylor 2022; Shapiro 2024).

Third, we contribute to the broader literature on auto market environmental regulation (Bento

et al. 2009; Fowlie et al. 2012; Jacobsen 2013; Jacobsen and van Benthem 2015; Knittel and Sandler

2018). Diamond (1973) discusses the theory of homogeneous corrective taxes for heterogeneous

externalities. Knittel and Sandler (2018), Jacobsen et al. (2020), Jacobsen et al. (2023), and others

estimate welfare losses from imperfectly pricing heterogeneous externalities from primarily GVs.

Holland et al. (2016; 2019; 2020; 2024) measure differences in EV externalities across space due

to different fuels used in the electric grid. Building on their work, we incorporate market power

distortions, international profit shifting, distortionary taxation, and fatal car accidents, and we

analyze the social planner’s problems from both global and national perspectives. These elements

prove important, as distortions from market power and international profit shifting constitute

a substantial portion of the constrained optimal subsidies we calculate. While our equilibrium

model reflects common features, it expands on Goldberg (1995), Berry et al. (1999), Goldberg

and Verboven (2001), and other work by analyzing buy-lease substitution and constrained optimal

subsidies. Little research compares lease versus purchase decisions, which matter since leasing

accounts for a fourth of new US vehicle registrations and impacts financing markets. Our detailed

dealership data and policy-induced variation in lease versus purchase prices make this an excellent

setting to compare lease and purchase decisions.

The remaining sections 2–8 present the policy background, data, descriptive facts, event studies,

structural model, counterfactuals, and conclusion.

2 Policy Background

2.1 Electric Vehicle Markets

An electric vehicle is defined as any vehicle with an electric motor and a plug. This includes plug-in

hybrid electric vehicles (PHEVs), which have both an electric motor and a gasoline engine, and

battery electric vehicles (BEVs), which do not have a gasoline engine. Gasoline vehicles include

any vehicles with a gasoline engine and no plug, including traditional (non–plug-in) hybrids. We

exclude fuel cell vehicles from our analysis, as they accounted for only 0.02 percent of new vehicle

sales in 2022 and 2023.
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EVs represented 18 percent of global new light-duty vehicle sales in 2023, up from 2 percent

in 2018 (IEA 2024). China dominates the EV market: in 2023, about 60 percent of global new

EV sales were in China, Chinese carmakers made half of all EVs sold worldwide, and China was

the world’s largest EV exporter (IEA 2024). China also dominates the supply chains for battery

minerals and components (Leruth et al. 2022).

US political leaders have responded to China’s dominance and EV growth by emphasizing do-

mestic manufacturing, industrial policy, and secure supply chains. For example, National Economic

Council director Brian Deese has said that “[we envision] a twenty-first-century American industrial

strategy—a strategy to strengthen our supply chains [and] rebuild our industrial base” (Atlantic

Council 2021). Similarly, National Security Adviser Jake Sullivan has said that “clean-energy sup-

ply chains are at risk of being weaponized in the same way as oil in the 1970s, or natural gas

in Europe in 2022. So through the investments in the Inflation Reduction Act and Bipartisan

Infrastructure Law, we’re taking action” (Sullivan 2023). In explaining his pivotal vote for the

IRA, Senator Joe Manchin (2022) wrote, “the increased risk of geopolitical uncertainty demands

that we turn our focus to increasing US energy production and bringing good paying energy and

manufacturing jobs back to America.”

Our setting has some information about the valuation of climate damages. In regulatory design

and evaluation, including for the IRA, the US government uses a global social cost of carbon

(SCC), including damages to all foreign countries (US EPA 2023a).1 At the same time, the IRA’s

use of domestic and allied content restrictions implicitly values domestic producer surplus and labor

earnings, at the expense of foreign surplus.

2.2 Clean Vehicle Credits

Clean Vehicle Credits are non-refundable income tax credits of up to $7,500 for buying new plug-

in EVs or fuel cell vehicles under 14,000 pounds. The Energy Improvement and Extension Act

of 2008 first established EV tax credits, under Internal Revenue Code Section 30D. The 2009

American Recovery and Reinvestment Act (ARRA) limited full eligibility to the first 200,000 EVs

each manufacturer sold; credit amounts phased down to zero over the next four quarters. Tesla

and General Motors (GM) exceeded the 200,000 limit and lost eligibility in 2018 and 2019. Toyota,

Ford, BMW, and Stellantis all exceeded 200,000 by mid-2023. Thus, by mid-2023, the pre-IRA

policy would have mostly subsidized purchases from foreign manufacturers, with all major domestic

manufacturers of EVs being ineligible for pre-IRA credits due to reachinmg the cap.

Both individual and corporate taxpayers may receive the 30D credits. For example, a business

can claim the credit for buying vehicles for its motor pool or for buying a vehicle to lease to an

individual. In January 2024, after our data conclude, buyers became able to claim the credit at

point of sale.

1The SCC represents damages to all regions, years, and pathways due to climate change. The Obama and Biden
Administrations have used a global social cost of carbon, while the Trump Administration used a domestic social
cost of carbon (Aldy et al. 2021).
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The IRA, which became law on August 16, 2022, changed 30D eligibility requirements for both

taxpayers and vehicle models. For taxpayers, the IRA required that individual buyers have Adjusted

Gross Income (AGI) below $300,000 for married couples filing jointly, $225,000 for household heads,

or $150,000 for all other taxpayers, starting January 1, 2023.

Figure 1 illustrates how the IRA changed eligibility of different vehicle models over time. In

this figure, the columns reflect dates of eligibility changes and the rows categorize vehicle models

that jointly experience eligibility changes. The intensity of the color shading reflects the amount

of the tax credit that the models qualify for at that time, from empty (no credit) to full shading

(the full $7,500). The first column shows that Tesla and GM vehicles received no credit pre-IRA,

as they had exceeded the 200,000 vehicle sales limit. The remaining columns reflect the dates of

three changes due to the IRA.

First, starting August 17, 2022, vehicles had to undergo final assembly in North America. This

excluded the European and Asian models colored in red. We refer to these submodels as the

Excluded August 2022 group. Second, starting January 1, 2023, the policy eliminated the 200,000-

vehicle sales limit, which re-included the Tesla and GM vehicles colored in blue. Also starting on

that date, eligibility began requiring Manufacturer’s Suggested Retail Prices (MSRP) below $55,000
(for cars) and $80,000 (for SUVs and trucks), which excluded the Lucid Air and Mercedes-Benz

EQS as well as Tesla models S and X.

Third, starting April 18, 2023, the policy added a battery component and minerals requirement

on top of the North American assembly requirement. We refer submodels thereby excluded as

the Excluded/Reduced April 2023 group. The policy split the credit into two parts: $3,750 for

satisfying the critical minerals requirement and another $3,750 for satisfying the battery component

requirement. The critical minerals requirement stipulates that at least 40 percent of the battery

minerals must be either (i) extracted or processed in the US or a country with which the US has a

free trade agreement, or (ii) recycled in North America. The battery component requires that at

least 50 percent of the battery components come from North America. The required percentages

increased in 2024 and are set to increase further in future years. In 2023, these requirements

reduced or fully eliminated credits for the Ford, Jeep, Rivian, Audi, BMW, and Nissan models,

colored in orange. Because substituting battery suppliers is generally infeasible in the short run,

our analysis timeframe largely rules out such substitution. As we emphasize, long run analysis in

future research could usefully shed light on this margin of substitution.

The IRA also established a new “Commercial Clean Vehicle Credit” under Internal Revenue

Code Section 45W, starting January 1, 2023. Section 45W also offers $7,500 credits for new

plug-in EVs under 14,000 pounds, and larger credits for larger vehicles. All EVs qualify for 45W

credits, with no final assembly, battery content, or buyer income requirements. In late December

of 2022, the US Treasury announced that businesses could claim the 45W credit for leasing EVs

to individuals. Analysts refer to this as the “leasing loophole”: individuals who would not qualify

for the 30D credit to purchase a given vehicle, due to either buyer income or vehicle eligibility

restrictions, could instead lease that same vehicle, and the leasing company would qualify for the
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45W credit. While the IRA specifies that the 30D and 45W credits will end after 2032, it does not

cap credits before then.2

3 Data

3.1 Main Datasets

This section describes our main data; Appendix A provides further details including on other

datasets we use. Our primary dataset is a submodel-by-month panel of registrations and prices

from January 2022 through December 2023, for all vehicles below 10,000 pounds. We define a

“submodel” as a make ×model × trim × powertrain (GV, BEV, PHEV) combination. For example,

the Nissan Leaf has five submodels (S, SV, S Plus, SV Plus, and SL Plus). The four Tesla models

in our data (S, X, Y, and 3) each have a single trim and powertrain.

We purchased nationwide new vehicle registrations by submodel and month of registration from

Experian. We observe purchases and leases separately. In Experian, we measure the lease share

as the ratio of leases to total registrations. We include only registrations for personal use or lease,

excluding other sales to businesses, and we exclude heavy-duty vehicles.

We observe price data from three sources. First, we have dealership transaction microdata

from Cox Automotive. For purchases, we observe the vehicle price, excluding taxes, net of any

rebates. For leases, we observe lease lengths, annual percentage rates (APR), any rebates, and the

resulting monthly payment amounts. The Cox data include 6.8 million new vehicle transactions in

2022 and 2023, representing 31 percent of total national transactions in those years. Brand-level

coverage rates vary but mostly range from 20 to 50 percent, while state-level coverage rates range

from about 10 to 30 percent; see Appendix Figure A1. Cox has no coverage of new vehicle sales by

Tesla, Rivian, and Lucid, as they sell directly to consumers instead of through dealerships.

Second, we augment the Cox data by collecting Tesla monthly purchase and lease prices for base

model configurations. We obtain the Tesla data by scraping online sources such as the Tesla website

(via the Internet Archive), contemporaneous reports of pricing, and historical price data that Tesla

enthusiasts openly collect (Appendix A provides more details). Third, we use registration-level

microdata from the California Department of Motor Vehicles (DMV). Dealerships report the prices,

which include the full price excluding sales tax, license fees, or financing costs. For leases, the

California data have no information on rebates or other contract terms besides the reported price

that the lease reflects. The California and Cox purchase prices have a correlation of 0.99 at the

submodel × month level.

We construct a lease price variable for each transaction, reflecting the discounted lease payments

plus the residual, i.e., the car’s resale value at the lease term’s end. Index transactions by i, and let

k = k (i) and t = t (i) index the submodel and month for transaction i. Define Ti as the lease term

in months. Let s index the monthly payments, which consumers make at the beginning of each

2One environmentalist summarizes the IRA as “bottomless mimosas brunch special,” since it does not limit the
number of subsidies that households and firms can claim (Yablon 2023).
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month. Define di as the down payment, mi as the monthly payment, pkt as submodel k’s average

purchase price, DT as the percent depreciation over T months, and δt as the discount factor. We

observe Ti, di, mi and pkt in the Cox data. For depreciation DT , we follow standard industry

estimates that a vehicle loses 20 percent of its value in the first year and 15 percent annually

thereafter (Capital One 2024). We construct the discount factor δt from the interest rate on new

vehicle loans in month t from Federal Reserve Bank of St. Louis (2024b). The lease price equals

Li = di +

Ti∑
s=1

δs−1
t mi︸ ︷︷ ︸

lease payments

+DT pkt︸ ︷︷ ︸
residual

. (1)

Equation (1) lets us compare lease prices to purchase prices, as both reflect a price over a vehicle’s

life. It also lets us compare lease prices across different lease terms.

In the submodel-by-month panel, the purchase price and lease price variables represent the

mean across transactions. Since the California data include direct-to-consumer brands like Tesla,

we use California data for purchase price. Since Cox has detailed information on lease terms, we

use Cox for lease price. The relative lease price variable equals the submodel-by-month difference

between purchase price and lease price in Cox data, augmented with the scraped Tesla data.

Appendix Figure A2 shows the full list of EV submodels and the months in which they appear

in our data. We have data on a total of 62 EV submodels as of January 2022, and another 108

entered the market between January 2022 and December 2023.3 To address compositional effects

from this entry, many of our analyses look at changes within submodels over time. When submodels

enter or exit, many have phase-in or phase-out periods with unusually low monthly registrations.

Our analysis sample excludes data from months at the beginning or end of a submodel’s life,

when monthly registrations fall below half of the submodel’s sample average. Appendix Figure A3

illustrates the phase-in and phase-out periods that we exclude. We also exclude any observations

with fewer than 25 registrations. Additionally, we exclude any purchase or lease price observations

based on fewer than 10 transactions.

Table 1 presents descriptive statistics for the submodel-by-month dataset. Our data cover a

total of 1,165 EV or GV submodels across all months. The mean submodel-by-month observation

has 1,076 registrations, a purchase price of $51,140, a lease price of $48,011, and a lease share of

25 percent.

To address compositional effects from submodel entry and market share changes, many of our

descriptive figures using the submodel-by-month dataset present fixed-weight arithmetic indexes.

Specifically, for a variable such as prices, we first compute the mean for a group of submodels

in January 2023, weighting submodels by mean monthly sales in months when the submodel was

available. For each previous or subsequent month, we then recursively add the sales-weighted mean

3Timing makes it unlikely that the IRA’s passage affected the introduction of new models in 2023, for two reasons.
Model planning typically requires multiple years’ lead time. Additionally, in 2021 and up through August 2022, auto
manufacturers faced substantial uncertainty about the likelihood of the IRA’s passage or the details of EV tax credits
conditional on IRA passage.
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change for all submodels available in both months.4

In addition to the submodel-by-month panel, we use several other types of data. First, to

measure supply chain constraints, we use monthly “days-to-turn” from Edmunds (2024), i.e., the

mean time that vehicles sold in that month were available in the dealership’s inventory before being

sold. The Edmunds data exclude Tesla, so we collect delivery wait times originally reported on the

Tesla website (Tesla 2023; Tom Pritchard 2023; The Internet Archive 2023).

Second, in summer 2023, we surveyed US dealerships to determine EV market wait times,

prices, and qualitative characteristics. Research assistants collected data on the earliest date they

could drive home popular EV models. This survey obtained 681 data points from 258 dealerships

in each of eight metro areas and 20 brands, excluding Tesla and Rivian. These interviews guide

our discussions of evolving supply chain conditions throughout 2022-2023 and lead the equilibrium

model to focus on summer 2023 as a baseline. Appendix A.2 provides details.

Third, to identify substitution patterns in our demand model, we use second choice data from

the New Vehicle Experience Survey (NVES), collected by the company Strategic Vision. Strategic

Vision surveys a large sample of US new vehicle buyers soon after their purchase, and has a response

rate of about five percent. Among other questions, the survey asks whether the buyers considered

any vehicles other than the one they purchased or leased, and if so what model. We have 273,290

survey responses from the 2022 and 2023 surveys.

Finally, we use several sources to measure externalities. We assume that vehicles impose four

externalities: (i) CO2 emissions from manufacturing and scrap, (ii) CO2 and local air pollution

emissions from driving, (iii) fatal accidents, and (iv) fiscal externalities from explicit or implicit taxes

on gasoline and electricity. For CO2 emissions from the value chain of manufacturing plus scrapping

vehicles, we use estimates from Argonne National Labs (Kelly et al. 2022), which distinguishes three

powertrains (BEV, PHEV, GV), but has no heterogeneity across submodels. For the CO2 emissions

and local air pollution damages from driving vehicles, we combine estimates of local air pollution

damages and local grid emission intensities from Holland et al. (2016) with US EPA (2024) exhaust

test records and fuel efficiency. For the mortality cost of car accidents due to each submodel’s weight

relative to the lightest vehicle, we use regression estimates from Anderson and Auffhammer (2014)

and apply the US Department of Transportation (2024) $13.2 million value of a statistical life.

For positive fiscal externalities, we use the utility-specific markups on residential electricity above

private marginal cost calculated by Borenstein and Bushnell (2022) for EVs and federal and state

gas taxes for GVs. For all externalities, we assume that vehicles have a useful life of 150,000 miles,

following US EPA (2014).5 We inflate all values to July-August 2023 dollars using the CPI for Urban

4Formally, define xkt as some variable for submodel k in month t, define q̄k as submodel mean monthly sales in
the months when firms sell it, and define t = 0 as January 2023. The fixed-weight index for in month t equals

x̄t =

∑
k q̄kxk0∑

k q̄k
+ 1 (t > 0)

t∑
r=1

∑
k q̄k (xk,r − xk,r−1)∑

k q̄k
+ 1 (t < 0)

t∑
r=−1

∑
k q̄k (xk,r − xk,r+1)∑

k q̄k
. (2)

As described in the text, xkt is missing for some kt, so the sums over k implicitly include only non-missing observations.
5Available evidence is limited though supports our assumption that EVs and GVs have a comparable useful

lifetimes. Nguyen-Tien et al. (2024) estimate a survival model of 30 million vehicles registered in Great Britain.
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Consumers (Federal Reserve Bank of St. Louis, 2024a). We assume that externalities including

marginal damages do not change over time in real terms, so we do not discount externalities from

driving later in a vehicle’s life. While the assumption of constant externalities is strong, it loosely

echoes the finding of flat marginal damages from electricity generation in Holland et al. (2022);

and ultimately the key question to some extent is changes in externality differences between EVs

and GVs, and not merely changes in externalities for EVs. Just as the electric grid and EVs may

become cleaner over time, so too may GVs. We assume a global social cost of carbon of $241 (in

July-August 2023 dollars), following US EPA (2023a). The “domestic SCC” uses domestic (instead

of global) damages from CO2 emissions, equal to $28 per ton, computed using the ratio of the

United States SCC to global SCC from Ricke et al. (2018) times the global SCC. Appendix A.1

provides additional details.

Our use of the domestic versus global SCC values deserves brief discussion. Using the global

SCC for policy design may generate larger domestic benefits that using the domestic SCC, since

(cooperative) use of the global SCC efficiently addresses cross-border externalities. If every country

used the domestic SCC in policy design, by contrast, countries would invest less in greenhouse

gas mitigation than is optimal. At the same time, the domestic SCC describes the damages to

a country resulting from an additional ton of CO2. While we report CO2 emissions separately

for each counterfactual scenario, in welfare aggregation and quantification, we use the domestic

SCC to report domestic costs of CO2 emissions and the global SCC to report global costs of CO2

emissions. This measurement convention lets us decompose the share of global benefits accruing to

the US versus foreign countries. We view this measurement decision as distinct from the normative

decision about whether a country ought to design policy using the domestic or foreign SCC. We

also separately report how each counterfactual affects CO2, which can be evaluated using any SCC

of interest.

4 Descriptive Facts

Several descriptive facts play important roles in developing and interpreting our empirical results.

Tesla dominates the US EV market. Panel (a) of Figure 2 presents registrations by month,

separately for Tesla and other EVs. Tesla represents 53 percent of US EV sales in 2022 and 2023.

Thus, Tesla plays an important role in our event study estimates and counterfactuals. Several of

our results discuss Tesla separately.

EV prices peaked in mid-2022. Panel (b) of Figure 2 presents fixed-weight indexes of

vehicle prices by month. EV prices increased in early 2022, peaked in mid-2022, and decreased

steadily thereafter. Tesla initiated the price cuts at the end of 2022, and other manufacturers soon

followed. Media reports attribute the price cuts to the improvement of pandemic-related supply

chain bottlenecks, plus softening demand partly due to interest rate hikes (Boudette 2023; Cao

Their preferred specification indicates that the median lifetime of BEVs in years is 1.5 percent below the median
lifetime of GVs, and that the median lifetime miles for BEVs are about 7.5 percent greater than for GVs.
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2023; Shepardson and Nair 2023).

Inventory constraints peaked in mid-2022. Figure 3 presents evidence of supply con-

straints related to the price trends. Panel (a) presents the fixed-weight index of days-to-turn for

GVs and EVs, excluding Tesla. The average non-Tesla EV sold in July 2022 had been at the

dealership for about 20 days, while the mean vehicle sold in July 2023 had been at the dealership

for over 50 days. Panel (b) presents the fixed-weight index of delivery wait time for Tesla models.

The mean Tesla ordered in July 2022 would be delivered in about 200 days, while the mean Tesla

ordered in July 2023 would be delivered in about 25 days. Our dealership survey found that by

summer 2023, market share-weighted EV wait times were below a month for 94 percent of EVs

sold via dealerships; 90 percent of EVs were available immediately. Guided by these patterns, our

Section 5 event study analyses consider the relevance of supply constraints for the August 2022

change in tax credit eligibility, though we interpret the April 2023 change in eligibility as facing

less serious supply chain constraints. Additionally, this evidence informs the choice in Section 6 to

base our equilibrium model around Summer 2023, when supply chain constraints had relaxed.

A majority of EV buyers have incomes below the IRA’s 30D limit. The expected

effects of the IRA’s Section 30D credits depend on what share of buyers have incomes below the

that section’s limits of $300,000 for married couples filing jointly, $225,000 for household heads, or

$150,000 for all other taxpayers. The NVES data show that 57 percent of EV buyers in 2022 and

2023 reported household income below $200,000, and 78 percent reported household income below

$300,000; see Appendix Figure A4. The IRS Statistics of Income (SOI) data show that 54 percent

of taxpayers who claimed 30D credits in 2021 had Adjusted Gross Income under $200,000. This

guides the focus of our equilibrium model on analyzing trade more than income restrictions.

Assembly locations shifted little after the 30D eligibility requirement. Most vehicles

excluded from eligibility have not changed their assembly sites, remaining in the same locations from

before August 2022 to late 2023. A notable exception is the Volkswagen ID.4, which transitioned

from assembly in Germany to Volkswagen’s Chattanooga, Tennessee plant, though this shift began

before the IRA’s passage. Both Hyundai and Kia have announced and begun constructing US

facilities for their electric vehicles. Hyundai’s investment in Georgia was announced before the

IRA, while Kia’s Georgia facility was announced in mid-2023. This guides our interpretation and

focus of our analysis on the short- to medium-run, which we interpret as a period of largely fixed

international sourcing.

The EV market share is growing but the domestic assembly share is not. Figure

4 shows US trends that have resulted from the IRA credits plus other market forces. Panel (a)

shows that the EV share of new vehicles rose from 6.9 percent in the first quarter of 2022 to 12

percent by the fourth quarter of 2023. Panel (b) shows that the share of EVs produced in the

US stayed roughly constant at around 70 percent over this period. Of course, this graph does not

show what would have happened without the IRA. For example, foreign manufacturers introduced

a disproportionate number of new EV submodels from late 2022, likely independently of the IRA,

since submodel introduction requires a long lead time. Without the IRA, this might have decreased
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the North American assembly share of EVs in the time series.

The EV credits largely represent a “Buy American” policy. Panel (b) of Figure 4

shows that about 90 percent of EVs assembled in North America are US-assembled. The share of

US-assembled as proportion of North American-assembled is lower for GVs, at about two-thirds.

While the Section 30D EV credits require North American assembly, these data show that in

practice this requires US assembly, leading us to interpret this setting as more “Buy American”

than “Buy North American.”

Dealers advertise and respond to EV subsidies. Many dealerships in our survey men-

tioned the EV credits. Many dealerships also undertook advertising campaigns highlighting $7,500
rebates on leases (Appendix Figure A5 provides one example). Several dealers in our survey also

proposed a strategic transaction to evade Section 30D restrictions—these dealers proposed leasing

the vehicle, then very soon afterwards the customer would buy out the lease. This would obtain the

$7,500 Section 45W leasing credit for what was effectively a purchase, without facing trade, income

or MSRP restrictions. We are not aware of any media, government, or academic evidence mention-

ing the existence of this “loophole within a loophole.” We investigated the statistical prevalence of

this strategic evasion in the Texas registration data in which we can track a vehicle over time. We

estimate that it exists but is quite rare, so we do not pursue it further. (Appendix B.1 provides

details)

EVs have somewhat lower externalities than GVs. Table 2 summarizes our lifetime

submodel-level externality values by powertrain. Using the global SCC, the mean EV imposes

about $16,000 in lifetime negative externalities, while the mean GV imposes $19,200 in negative

externalities. It may be surprising that the difference between EVs and GVs is relatively small.

The table rows show that while EVs do have $6,500 lower CO2 externalities from driving, they have

higher other non-fiscal externalities—higher CO2 externalities from manufacturing ($900), higher
local pollution externalities via the electric grid ($1,900), and higher accident externalities due to

EVs’ greater weight ($2,300), though more positive fiscal externalities ($1,700). More surprisingly,

valued at the US SCC, the mean EV has 30 percent higher negative externalities than the mean

GV, partly because the mean EV is about 30 percent heavier than the mean GV and because

GVs have lower local pollution emissions. Table 2 also shows that environmental externalities from

CO2 meaningfully exceed environmental externalities from local air pollution. While our analysis

measures both sets of externalities, for this reason our subsequent discussions of the “environment”

primarily reflect CO2.

EVs have large heterogeneity in externalities and similar heterogeneity as GVs.

Figure 5 displays the substantial variation in externalities across EV submodels, which reflects

their different weights and electricity use per mile. For both EVs and GVs, valued at the global

SCC, most vehicles have externalities of $5,000 to $30,000, while valued at the domestic SCC, most

vehicles have externalities of $0 to $15,000. Dispersion appears similar within EVs and within GVs.

Not shown in the figure is one other type of heterogeneity: the mostly foreign-assembled vehicles

that the 30D credits exclude have slightly larger negative externalities than 30D-eligible submodels
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($608 on average), a fact that affects our evaluation of trade restrictions in Section 6.

Appendix Table A1 shows three measures of the dispersion in externalities across submodels

corresponding to the histograms in Figure 5—the standard deviation; the coefficient of variation,

which equals the standard deviation divided by the mean; and the interdecile ratio, which equals

the log of the 90th percentile externality divided by the log of the 10th percentile externality. This

table shows the surprising result that EVs and GVs have broadly similar dispersion in externalities.

The standard deviation is modestly higher for GVs, partly since the mean externality is higher,

but the coefficient of variation and interdecile ratio have similar magnitude for EVs as for GV, and

the statistical tests fail to reject that these values are equal for the two powertrains. This finding

also applies for several components of externalities individually.

This finding matters because numerous policies around the world focus on moving consumers

from GVs to EVs—“vehicle electrification” is an omnipresent climate policy goal. Such policies

largely ignore whether consumers purchase high- or low-externality EVs. The finding has some

potentially general implications. Policies that make consumers substitute from clean GVs to dirty

EVs (e.g., Priuses to Cybertrucks) can increase externalities. EV policies may benefit from en-

couraging substitution from high- to low-externality EVs, just as many GV policies encourage

substitution from dirty to clean GVs. Additionally, policies like the IRA that subsidize some but

not all EVs could increase emissions if they subsidize dirty EVs. The counterfactual analysis in

Section 7 revisits these ideas.

5 Event Studies Around Credit Eligibility Changes

This section asks two empirical questions about the short-run effects of EV tax credit eligibility

changes. First, how much economic incidence has been on consumers versus producers? Second,

how elastic is substitution between purchases and leases? To answer these questions, we exploit

variation over time in eligibility rules for both Sections 30D and 45W using event study designs.

5.1 Methodology

Our event study analyses consider three outcomes: purchase prices, relative lease prices, and lease

shares. We also estimated effects on registration quantities, but the estimates were economically

imprecise and potentially related to other market trends; see Appendix C.3. For each outcome,

we present two graphical analyses: descriptive trends in the fixed-weight index and event study

estimates. The latter use two-way fixed effects regressions with GVs as controls. In market equi-

librium, price changes for any vehicle can affect prices and sales of all vehicles, so the event study

estimates capture changes relative to controls, not absolute effects against an unaffected control

group.

To formalize the methodology, define ykt as an outcome variable for submodel k in month t:

purchase price, relative lease price (i.e., lease price minus purchase price in the Cox data), lease

share, or natural log of registrations. We index tax credit eligibility groups by e = e (k) and define
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te as the month when group e’s eligibility changes. We let s index months in event time (relative to

te), and we define Se as the set of months in event time over the 24-month sample, excluding month

s = −1. Let Ck represent the absolute value of the change in tax credit available to submodel k,

divided by $7,500. For example, a vehicle that becomes eligible for the full $7,500 tax credit has

Ckt = 1, and a vehicle where eligibility falls from $7,500 to $3,730 has Ckt = 0.56. We define ϕj

and νt as submodel and month-of-sample fixed effects. We estimate event study graphs using

ykt =
∑
e

∑
s∈Se

γesCk · 1 {t− s = te}+ ϕk + νt + εkt. (3)

We cluster standard errors by model to account for correlation across submodels and over time.

As in the descriptive figures, we weight all observations of submodel k by the mean monthly

registrations in the months when it is available. Unweighted results would disproportionately

reflect low-volume submodels and the exact definition of a submodel.

We considered several alternative specifications. “Doubly robust” estimates where the GV

control group is reweighted to match the EV pre-IRA average price give very similar estimates;

see Appendix C.2. Alternative specifications using only EVs as controls give considerably noisier

estimates that are mostly not statistically distinguishable.7

5.2 Purchase Prices and Economic Incidence

We first consider purchase prices as a way to learn about economic incidence. If purchase prices

remain unchanged when a vehicle’s eligibility changes, this implies that consumers bear the full

economic incidence, since during our analysis period, buyers can later claim the entire 30D tax credit

on their individual income taxes. As mentioned earlier, after our data conclude and beginning in

2024, consumers could effectively claim the credit at point of sale.

In theory, several forces govern economic incidence. First, incidence reflects the relative elasticity

of supply and demand. Figure 3 showed that inventory was tight in 2022, but supply became more

elastic in 2023. Second, not all consumers qualify for the 30D credits. Tighter eligibility restrictions

reduce aggregate demand shifts, attenuating price changes and thus increasing incidence on eligible

consumers. Third, adjustment costs and time lags in decisionmaking could attenuate or delay

price changes. Fourth, it may take time for consumers to become fully aware of recent EV credit

eligibility changes, although the value of learning this information is high. Fifth, even if mean

purchase prices remain unchanged, producers may bear some incidence if prices change differently

for firms with different market power (Weyl and Fabinger 2013).

The fixed-weight purchase price indices in Panel (a) of Figure 6 suggest limited changes in

6In the few instances of variation in eligibility within a submodel, we assign maximal eligibility to all observed
transactions. This affects a small number of submodels, such as the BMW 330e (which was being assembled in both
Mexico and Germany for the US market in late 2022) and the Volkswagen ID.4 (which moved assembly to Tennessee
in late 2022, resulting in some model year 2022 German-assembled ID.4s being registered after the IRA passed).

7New difference-in-difference approaches focus on addressing staggered treatment timing (Roth et al. 2023; Roth
2024), which is not relevant in our setting because equation (3) estimates a separate set of coefficients {γe

s} for each
eligibility group.
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purchase prices coincident with credit eligibility. The red and orange vertical lines indicate the

date of eligibility change for the eligibility group of the corresponding color from Figure 1. For

the vehicles that lost credit eligibility in August 2022, shown in red, prices change relatively little

in the several months before and after those vehicles lost eligibility in mid-August 2022, although

prices drop more substantially in early 2023 as part of the price cuts described in Figure 2. For the

Excluded/Reduced April 2023 group in orange, prices also drop temporarily in early 2023, but the

index stays in the range of $63,000 to $65,000. For all other EVs in black, which is mostly Tesla,

prices drop by more than $10,000 between mid-2022 and the end of 2023. The price trends in late

2022 may reflect supply conditions, while we interpret patterns in Spring and Summer 2023 as less

constrained.

The event study coefficients γes from equation (3) for each eligibility group in Panel (b) of Figure

6 also suggest that EV tax credit eligibility had limited effects on purchase prices. The patterns

closely match Panel (a). The left sub-panel shows that the 95 percent confidence intervals rule out

that prices for the submodels that lost eligibility in August 2022 dropped more than $500 to $1,000
September–December 2022 relative to August 2022, although prices do drop in early 2023. The

right sub-panel shows the 95 percent confidence intervals rule out that the Excluded/Reduced April

2023 group’s prices dropped more than about $2,000 relative to April 2023. Our finding of little

change in transaction prices for either event, despite the slackening of supply chain constraints over

this period, provides one piece of evidence that supply conditions are not the primary driver of this

finding. We do not consider event studies for the groups that changed eligibility in January 2023

because those are immediately coincident with the large Tesla-led price cuts, related to broader

market trends in that period.

Regression estimates that restrict the coefficients to be equal across the submodels that lost

eligibility in August 2022 and April 2023 also suggest that consumers bore the bulk of the short-run

incidence of losing Section 30D credit eligibility. These estimates reject the hypothesis that prices

dropped by more than $620 in the three months after losing eligibility versus the three months

before; see Appendix Table A3. Thus, when eligibility changes exclude these vehicles from $7,500
buyer-side income tax credits in August 2022 or April 2023, we reject the hypothesis that purchase

prices drop by more than a small fraction of that amount.

5.3 Relative Lease Prices

We next analyze lease prices, as a measure of economic incidence on consumers choosing to lease.

Our empirical analyses focus on the relative lease price (i.e., lease price minus purchase price)

for each submodel-by-month observation, both because the previous subsection makes predictions

about this relative price and because this can difference out potentially confounding pricing trends.

Recall that both before and after the IRA, Section 30D allowed firms that lease vehicles to claim

corporate income tax credits for leasing eligible vehicles to any buyer. Thus, firms leasing vehicles

in the Excluded August 2022 group could claim credits under 30D through August, 2022, lost

eligibility from August to December, and could again claim credits under 45W beginning January,
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2023. Tesla and GM could not claim tax credits for leasing in 2022 and the several preceding years,

but they could claim credits under 45W (or 30D, for eligible models) starting January 1, 2023.

Firms leasing all other vehicles could always claim tax credits for leasing EVs.

The lease tax credit effectively reduces the seller’s marginal costs for leasing a vehicle relative

to selling it. In a Nash-Bertrand pricing model like Section 6 describes, if leasing and purchasing

the firm’s other vehicles experience approximately proportional cross-price effects, one would thus

expect that newly eligible firms would reduce the price of leasing relative to purchasing by roughly

$7,500, the amount of the tax credit.

Panel (a) of Figure 7 presents the fixed-weight indexes of relative lease price for the two groups

of EVs that changed eligibility, all other EVs, and all GVs. Relative lease price for GVs dropped

moderately in both 2022 and 2023. As the market weakened, relative lease prices for EVs also

decreased in the latter half of 2022. For the Excluded August 2022 group, lease prices decreased

more sharply in 2023. For Tesla and GM, relative lease prices increased temporarily in December

2022, because Tesla cut purchase prices in that month but did not correspondingly cut lease prices

until the next month. Tesla and GM relative lease prices were relatively flat in 2023 until Tesla

started to offer a $7,500 lease rebate late in the year, and the blue line correspondingly drops in

November and December 2023. For all other EVs, relative lease prices also decrease more than

those of GVs over the course of 2023.

Panel (b) of Figure 7 presents the event study estimates. We define the “event” as the start of

45W lease credits in January 2023. The patterns match Panel (a), except that they adjust for the

comparison to GVs, where relative lease prices also decreased. The left sub-panel shows that for

the Excluded August 2022 group compared to GVs, relative lease prices decreased by about $5,000
compared to December 2022, and by about $7,000 relative to their level in July through November

2022. The middle sub-panel shows that with the exception of the December 2022 blip, Tesla and

GM relative lease prices trended slightly upward relative to GVs during 2023 until the November

2023 Tesla lease price reduction. The right sub-panel shows that for all other EVs, relative lease

prices dropped by around $3,000 relative to GVs by the end of 2023.

Also notable is the heterogeneity in EV relative lease price changes across firms; see Appendix

Figure A6. By July-August 2023 relative to October-December 2022, Kia, Volvo, Volkswagen, and

Hyundai had dropped relative lease prices by about $7,500, Jeep, BMW, Toyota, and Ford had

dropped relative lease prices by about $1,000 to $4,000, and Tesla and GM had not reduced relative

lease prices.

While the Excluded August 2022 group’s relative lease price decrease in 2023 is consistent with

substantial or full pass-through of the $7,500 lease credit, two other results are not. First, while

Tesla eventually offered lease rebates, the Tesla and GM relative lease price decreased by much

less than $7,500, and the decrease only occurred after an 11-month delay. Second, the Excluded

August 2022 group’s relative lease price did not increase in late 2022 after losing eligibility. An

industry insider suggested a possible explanation—the IRA might have caused a change in economic

incidence: perhaps the lease credit was not passed through before the IRA, but media coverage of
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tax credits and the leasing loophole could have raised the salience of leasing and the tax credit,

inducing firms to compete harder for leases.

5.4 Lease Shares

Finally, we consider how the IRA’s EV credits affect lease shares. Purchase-to-lease substitution

matters because it reflects the effects of the leasing loophole. If many additional consumers are

willing to lease, then the leasing loophole has large effects and generates less deadweight loss. If few

additional consumers are willing to lease, then the loophole has limited effects, and any quantity

effects we do see reflect larger deadweight loss.

One might expect an increase in EV lease shares in 2023 for two reasons. First, a price effect—as

shown in the previous section, relative lease prices decreased for some EVs in 2023. Second, a buyer

eligibility effect—when the Section 30D buyer income limits constrained eligibility in January 2023,

the relative price of purchasing 30D-eligible vehicles increased for income-ineligible buyers.

Panel (a) of Figure 8 presents the fixed-weight indexes of lease shares for the same three groups

plotted in Figure 7. For Tesla and GM, the lease share is about 10 percent until the end of 2023,

matching the timing of Tesla’s lease rebates. For both the Excluded August 2022 group and all

other EVs, lease shares decreased moderately in 2022 and then increased markedly in the first half

of 2023.

Panel (b) of Figure 8 presents the event study estimates, where we again define the “event” as

happening in January 2023. Consistent with Panel (a), we see a 45 percentage point lease share

increase for the Excluded August 2022 group compared to the GV trend since December 2022,

little change for Tesla and GM until the very end of 2023, and a 20 percentage point increase for

all other EVs.

These substantial leasing increases blunt the impact of the Section 30D trade and income

restrictions and reflect some deadweight loss, as tax incentives induce leasing by consumers who

would not have otherwise wanted to lease. They also guide the foundation of our equilibrium model,

which treats leasing and purchasing as separate options.

6 Equilibrium Model

The event study analyses of the previous section analyze data from up to 18 months after the IRA

began, which we interpret as the short run. This section describes an equilibrium model of vehicle

supply and demand. We incorporate a purchase and lease option, which allows us to evaluate the

consequences of the policy differences between purchases and leases. While we target the model to

match the purchase-lease-substitution from the event studies, we also target other moments from

existing estimates and consumer surveys, and we design the model to abstract from long-run changes

like factory investment, so we interpret this equilibrium model as describing short- to medium-run

IRA impacts. We combine our model with a welfare framework that allows us to evaluate the

effects of alternative policies, as well as to compute optimal policy within our framework, under
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various constraints and planner objectives.

6.1 Model Setup

Demand We assume a four-level nested logit demand system to capture four margins of substi-

tution that are relevant for evaluating EV purchase and lease credits: substitution from purchases

to leases, across models within a vehicle class, across vehicle classes, and from EVs to GVs. Con-

sumers have quasilinear utility and unit demand, so they select exactly one good plus a continuous

amount of the numeraire. Consumers choose between submodels and transaction types (purchase

vs. lease). Consumers can purchase any submodel and can lease most submodels, meaning some

do not offer a lease option. We index each submodel-by-transaction type choice by j. Each choice

corresponds to a submodel k(j), class c(j), and gasoline or electric powertrain g(j). We define class

as a combination of vehicle segment (e.g., sedan, SUV, etc.) and powertrain, so an EV sedan is a

different class than a GV sedan.8 There are J total inside goods, plus we include j = 0 to index

the outside option (e.g., buying a used vehicle).

There are M consumers in the market indexed by i. Each consumer selects the choice that

maximizes their utility. Let pj represent the purchase price or lease price, and τj is the 30D tax

credit. Because most consumers satisfy the income requirements and we focus on trade restrictions,

our equilibrium model assumes that all consumers qualify for the tax credit.9 Consumer i receives

the following indirect utility from choice j:

Uij = ξj − α (pj − τj) + ϵij , (4)

Here α represents the marginal utility of money, ξj captures all vehicle attributes other than the

price, and ϵij is an idiosyncratic preference distributed type-1 extreme value. We normalize Ui0 = ϵi0

for the outside option. We use bold typeface to indicate vectors, so ξ is the vector of ξj parameters.

Appendix Figure A11 illustrates the nesting structure. The nested logit model differs from

a standard multinomial logit by allowing the idiosyncratic error to be correlated across vehicles

that share a nest. Specifically, we define three sets of random coefficients
{
ζkik(j), ζ

c
ic(j), ζ

g
ig(j)

}
representing idiosyncratic preferences common to all choices within a group. For example, ζgi,GV

represents a random coefficient common to all choices within GVs. This commonality is what

generates correlation in preferences across choices. The dispersion of these coefficients is captured

by three parameters
{
σk, σc, σg

}
∈ [0, 1).10 Then ϵij takes a standard nested logit form:

8Our data have nine such classes with enough registrations to include in the estimates. GVs include SUVs, sedans,
pickup trucks, minivans, and coupes/convertibles. EVs include SUVs, sedans, pickup trucks, and minivans. Informed
by the patterns in the second choice surveys, we combine hatchback vehicles with sedans and crossover vehicles with
SUVs. The options for second choices available to survey respondents do partially aggregate across trims, and in
rare instances aggregate the EV version of a vehicle with its GV counterpart; we treat these as a GV second choice.
Minivans provide the primary example of this, since no EV-only second choice is possible in that case. Fortunately,
since EV minivans have a miniscule market presence and we weight by first choice shares, this minimally affects our
moments.

9Abstracting from income heterogeneity has the advantage that it makes conditions for uniqueness easier to
establish. In experiments with income heterogeneity we encountered multiple equilibria.

10Cardell (1997) and Galichon (2022) provide more details on this formulation of the nested logit model. In
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ϵij = ζgig(j) + (1− σg) ζcic(j) + (1− σg) (1− σc) ζkik(j) + (1− σg) (1− σc)
(
1− σk

)
ϵ̃ij , (5)

where ϵ̃ij is i.i.d. type-1 extreme value. To be consistent with random utility maximization,

we must have 1 > σk ≥ σc ≥ σg ≥ 0 (McFadden 1978). If σk = σc = σg = 0, then this

reduces to the standard logit model. As the dispersion parameters grow toward 1, the within-nest

preference correlation increases, making consumers more likely to select alternatives that share a

nest. Concretely, consider a consumer whose first choice is to purchase a submodel which is an EV

sedan. A larger σk implies more probable substitution to a lease of the same submodel than to a

different submodel, a larger σc implies more probable substitution to another vehicle of the same

class than to a different class, and a larger σg implies more probable substitution to another EV

than to a GV or to the outside option.

Under these assumptions, the market demand for any choice can be expressed in terms of

conditional shares

qj = sj|k(j)sk(j)|c(j)sc(j)|g(j)sg(j) ×M (6)

where, for example, sc(j)|g(j) represents the conditional market share of choice j’s class within its

powertrain and sg(j) is the unconditional market share of j’s powertrain (see Appendix D.1). Then,

the substitution between any two choices j and r can be compactly expressed in terms of the

definitions above as

∂qj
∂pr

=αsj

[
sr +

(
1

1− σg
− 1

)
sr|g(j)δg(j),g(r) +

(
1

1− σc
− 1

1− σg

)
sr|c(j)δc(j),c(r) (7)

+

(
1

1− σh
− 1

1− σc

)
sr|k(j)δk(j),k(r) −

1

1− σk
δj,r

]
×M

where δa,b is an indicator function taking on 1 if a = b and 0 otherwise. (For example, if j and

r are both EVs, then δg(j),g(r) = 1.) Equation (7) shows how, when the condition holds that

1 > σk ≥ σc ≥ σg ≥ 0, we see increasing substitutability between choices that share a nest.

Supply Auto manufacturing firms indexed f each offer a set of submodel-by-transaction type

choices Jf . Firms set their price vector pf to maximize profits in static Nash-Bertrand com-

particular, Galichon (2022) derives using the representation in equation (5) the exactly structure of the correlation
across choices. In our setup, for any two choices j and r,

corr(εij , εir) = 1−
[
(1− σg)

δg(j),g(r)(1− σc)
δc(j),k(r)(1− σk)

δk(j),k(r)

]2
where δa,b is the Kronecker delta.
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petition.11 The terms p and τ represent the vectors of prices and 30D credits available for all

choices, cj is marginal cost, κj represents the 45W credit available to firms for leasing choice j,

and qj
(
p;p−j , τ

)
represents choice j’s total quantity demanded from equation (6) as a function

of its price, given the price of all other products in the market and demand subsidies available.

In practice, cj could be interpreted as marginal opportunity cost, which could include both physi-

cal production costs and dynamic benefits. Firm f then solves the following profit maximization

problem for all products in its portfolio, Jf :

max
pjj∈Jf

∑
j∈Jf

(pj − cj + κj) · qj
(
pj ;p−j , τ

)
(8)

Firm f ’s first-order condition with respect to an arbitrary choice j in Jf is:

[pj ] : qj +
∑
r∈Jf

(pr − cr + κr)
∂qr
∂pj

= 0 (9)

We define firms f at the level of the parent company, such as Stellantis (which owns Chrysler,

Dodge, Jeep, and other brands). Our data have 17 firms.

Equilibrium The equilibrium describes a set of prices p such that any firm f facing demand for

their products as in equation (6) and taking prices of competitor firms as given has, for each j it

owns, a best response pj that satisfies equation (9) in the pricing game and is consistent with the

price vector p. Nocke and Schutz (2018) show that a unique Nash-Bertrand pricing competition

equilibrium exists with nested logit demand and multi-product firms whenever each firm supplies

products only in one of the nests. Our baseline model does not satisfy this sufficient condition for

uniqueness, though in practice we do not encounter multiple equilibria in estimation. We therefore

also consider for robustness a version in which each firm separately prices its products within each

powertrain-class nest, not taking into account within-firm cannibalization across powertrain-class

nests. This alternative version of competition satisfies Nocke and Schutz (2018)’s conditions for

uniqueness.

6.2 Estimation Procedure, Calibration, and Results

This subsection describes our estimation procedures, targeted moments, and evaluation of model

fit. Appendix D.2 provides additional details.

We estimate three sets of parameters: the vector of non-price attributes ξ; the price response

parameter α and three nested logit parameters
{
σk, σc, σg

}
; and the vector of marginal costs c.

11We assume no interactions with the federal fuel economy and greenhouse gas emission standards. Since automak-
ers had a large bank of compliance credits in 2023 (US EPA 2023b), the standards did not bind for that year alone,
but instead the EPA designed them to bind over a longer future period. This assumption would exactly reflect reality
if a future administration either set non-binding standards or set future stringency to equate marginal benefits and
marginal costs of future compliance. Our setting would violate this assumption if more EV sales in 2023 make it
easier to comply with the standards in future years.This would generate a “waterbed effect,” through which EV tax
credits would have smaller net effects on CO2 emissions.
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First, for given values of
{
α, σk, σc, σg

}
and observed market quantities qj , we back out the vector

of non-price attributes ξ using the Berry (1994) contraction mapping. Second, given values of ξ,

we use minimum distance gradient-based optimization to find new values of
{
α, σk, σc, σg

}
that

match a set of moments described below. We iterate the first and second steps until convergence.

Third, we construct the demand slopes
∂qj
∂pr

implied by the demand parameters from the first and

second steps, and back out the marginal costs c implied by the vector of first-order conditions from

equation (9).

Before estimating parameters, we make the following assumptions. Our baseline scenario con-

siders the market as of July and August 2023, partly reflecting our dealership survey and statistical

evidence suggesting supply chain constraints relaxed by this period. The choice set includes the

vehicles available and IRA credit eligibility as in those months. Additionally, we set market quan-

tities qj equal to six times their total for July plus August, representing annualized values, so we

abstract from seasonality in vehicle markets. Furthermore, we assume that each of the 131 million

US households purchases a vehicle every six years as in Coşar et al. (2018), giving a total market

size of 21.9 million households per year.

In the second step, we find
{
α, σk, σc, σg

}
that match four empirical moments, summarized in

Table 3. We match these moments jointly, but discuss them sequentially. First, we match the

market share-weighted model-level own-price demand elasticity of -5.36 that Grieco, Murry and

Yurukoglu (2024) estimate for their most recent reported year. We match their elasticity instead

of developing price instruments in our own data because their instruments (based on exchange

rate shocks) are plausible but require many years of data. Their estimate also reflects an annual

own-price demand elasticity with flexible supply, whereas the quantity variation in our monthly

time-series data partly reflects supply constraints. In Appendix Table A5, we consider sensitivity to

an alternative value of -4. More broadly, this moment targets findings from frontier research rather

than re-inventing the wheel for our case. Second, we match the effect on lease shares estimated in

Section 5. For the Excluded August 2022 group between October–December 2022 and July–August

2023, we estimate that lease prices decreased by $5,677 relative to purchase prices, and lease shares

increased by 39 percentage points (Appendix Table A2). We match the simulated effect of that

lease price decrease on lease shares for that group of models. Intuitively, these first two moments are

jointly informative about α and σk: the own-price demand elasticity defines how many consumers

substitute away from a choice while the lease share change defines how many turn to the immediate

purchase or lease alternative.

Third and fourth, we match two second choice moments from the NVES data: among respon-

dents who named a second choice, 52 percent of EV owners report another EV as their second

choice and 33 percent of EV owners report another EV within the same segment as their second

choice. These two moments are jointly informative about σc and σg, the correlation in preferences

within a class and powertrain.

Table 4 presents the scalar parameter estimates. Since we have as many moments as parameters

to estimate, we match the targeted moments exactly.
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Other Evidence of Model Fit

We discuss several ancillary pieces of evidence on model fit. First, Table 4 shows that our demand

system is consistent with utility maximization. Our methodology does not impose the requirement

that 1 > σk ≥ σc ≥ σg ≥ 0 but our estimates satisfy this condition.

Table 5 compares moments that the model does not formally target against reference values.12

We only target second-choice moments from the EV side of the market, but the GV second choice

shares from the model and the data (a moment we do not formally target) are reasonably aligned.

Our estimated model implies that 94 percent of GV owners choose another GV as a second choice,

compared to 97 percent in the NVES.

Additionally, Figure 9 shows the full substitution matrix between our nine-by-nine different

powertrain-segment combinations in model and the data. The correlation between the two is 0.74

, and 0.88 when weighting cells by first-choice market share. We also calculate the average miles

per gallon equivalent (MPGe) for GVs and EVs of second-choice vehicles. In the data, among GV

buyers who consider a second choice, the second choice has actual mean MPGe of 27.1, compared to

our model-estimated mean of 30.7. The corresponding second choice for EV buyers has actual mean

MPGe of 66.7, compared to our model-estimated mean of 64.0. While these statistics suggest good

fit, this moment is closely related to choice of powertrain and mean MPG within each powertrain.

Our estimates also imply an aggregate new vehicle demand elasticity of -1.4. Berry, Levinsohn

and Pakes (2004), Grieco, Murry and Yurukoglu (2024) and the empirical evidence in Allcott et

al. (2023) suggest comparable values. In our sensitivity to an own-price demand elasiticity of -4

(Appendix Table A5), the aggregate demand elasticity is -1.1.

We estimate positive marginal costs for all firms. Given marginal costs, we estimate the following

share-weighted mean markups: $9,100 for EVs (17 percent of price) and $8,400 for GVs (20 percent

of price). This has similar magnitude to the Grieco, Murry and Yurukoglu (2024) estimate that

vehicle markups average 22 percent of price in 2018, their most recent year, though the similarity is

not a high bar given that we match their mean price elasticity by design. The dispersion of implied

markups across submodels ranges from $7,600 to $10,800, with the largest markups for Tesla; see

Appendix Figure A12.

Finally, the equilibrium model does not target the pass-through regressions from Section 5 and

Appendix Table A2. Table 5 shows that comparing them provides decent but not exact alignment.

Scaling our results from the counterfactual of removing EV credits, the equilibrium model indicates

that of a $7,500 credit, consumers who buy receive $7,186, which is within the regression estimate

95% confidence interval ($6,879 to $8,865). Simulating a removal of 45W lease credits to suppliers,

the equilibrium model implies complete pass-through of the $7,500 lease credit to consumers among

the Excluded August 2022 vehicles, which is modestly higher than the event study estimate of $5,677
12We evaluated these other moments after fully completing model development, so approach them somewhat like

a held-out test set in machine learning. At the same time, if the model performed terribly on these moments that
we did not formally target, we may have investigated why and potentially revised the model, and these moments
that we do not formally target have important relationships to the moments we do target. We thus refer to these as
not-formally targeted moments.
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(95% confidence interval of $4,055 to $7,299). Of course the regressions and model could differ for

many reasons, including supply chain conditions in the August 2022 regression estimate (less so for

April 2023).13

6.3 Welfare and Measures of Policy Effectiveness

Social welfare has four components: consumer surplus, producer surplus, government spending, and

externalities. We compute consumer surplus using the Small and Rosen (1981) log-sum formula

adjusted for nested logit demand, denoted by CS(p, τ ). We compute producer surplus as the sum

of producer profits given markups, µj .
14 Subsidies provided by the government have a fiscal cost

that depends on the marginal cost of raising public funds, η. Externalities arise from the production

and use of choice j and consist of carbon and non-carbon damages under an assumed social cost

of carbon, ϕj = SCC × ϕCO2
j + ϕOther

j . Appendix A.1 provides details of how we calculate these

externalities.15

Global welfare under a given subsidy policy (τ ,κ) equals:

W (τ ,κ) = CS (p, τ )︸ ︷︷ ︸
consumer surplus

+
∑
j

qjµj︸ ︷︷ ︸
producer surplus

− η
∑
j

qj (τj + κj)︸ ︷︷ ︸
government spending

−
∑
j

qjϕj︸ ︷︷ ︸
negative externalities

(10)

Equation (10) takes the perspective of a global planner that internalizes the effects of a policy on

all firms and uses a global social cost of carbon. Section 7 considers two alternatives that describe

how a domestic planner may evaluate a policy differently than a global planner. The first, WUS ,

takes the view of a total US social planner that places no weight on foreign firms and assumes a

domestic social cost of carbon. The second, W̃US , takes the seemingly contradictory but potentially

factual perspective of a domestic social planner that places no weight on foreign production but

internalizes the global cost of environmental damages. Labeling ϕUS
j as externalities under an

assumed domestic social cost of carbon,

13Miravete et al. (2024) discuss pass-through across various demand model specifications. Their results, alongside
the findings of Head and Mayer (2023), suggest that a (nested) logit demand specification yields a pass-through rate
more consistent with the empirical findings in Section 5 than the rates derived from alternative specifications, such
as CES or models with heterogeneous price sensitivities.

14While producer markups are endogenous to policy, we assume that the outside option (e.g., used vehicles) is
competitively sold at constant markup. Since the mean value of the outside option is normalized to zero, the absolute
level of utility cannot be measured. We can, however, report changes in surplus relative to a baseline scenario.

15Conceptually, we want to compute uninternalized externalities from the vehicle sales which the policy changes we
consider do not directly change, over the life of those vehicles in the locations where they are operated. Changes in
new vehicle prices induce substitution to used vehicles, taxis, and ride sharing, public transportation, reduced overall
mobility, and other options. We assume that the bulk of this effect involves driving used vehicles more and delaying
their scrap. Since most used vehicles are currently GVs, we assume that the outside option has the same externality
as GVs, except with no manufacturing CO2 emissions.
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WUS (τ ,κ) = CS (p, τ ) +
∑
j∈US

qjµj︸ ︷︷ ︸
domestic profits

−η
∑
j

qj (τj + κj)−
∑
j

qjϕ
US
j︸ ︷︷ ︸

domestic damages

(11)

W̃US (τ ,κ) = CS (p, τ ) +
∑
j∈US

qjµj︸ ︷︷ ︸
domestic profits

−η
∑
j

qj (τj + κj)−
∑
j

qjϕj︸ ︷︷ ︸
global damages

(12)

We use these three measures to highlight the tradeoffs in green industrial policy between trade

and the environment. We separate producer surplus into components from US- versus foreign-

owned firms. For calculating these statistics, we define “US producers” as Tesla, Rivian, Lucid,

Ford, GM, and the former Chrysler Group brands (Chrysler, Dodge, Jeep, and Ram). We define

all others as “foreign producers.”16

In addition to welfare, our counterfactual analyses discuss two other aggregate metrics for policy

evaluation: the cost per ton of CO2 abated and the marginal value of public funds (MVPF, see

Hendren and Sprung-Keyser 2020). We define these as

Cost

tonCO2
=

∆CS +∆PS −∆non-CO2 negative externalities−∆G

∆CO2

MVPF =
∆CS +∆PS −∆negative externalities

∆G

where CS and PS are consumer and producer surplus and G is government spending. The cost

per ton abated helps to compare against alternative estimates of the social cost of carbon, though

has interpretive limitations (Hahn et al., 2024). In particular, it is negative for policies which

reduce carbon emissions but are welfare-positive even when not considering carbon damages. To

focus on the value of subsidy expenditures, the MVPF includes only EV tax credit spending in the

denominator; we interpret the gas tax as a (fiscal) externality.

Researchers usually interpret the MVPF as an evaluation of government spending. Several

of our counterfactuals, however, decrease government spending. The MVPF in these cases may

be best thought of as evaluating the higher-spending alternative—e.g., when comparing the IRA

to its repeal, a higher MVPF means that the additional spending on the IRA is more valuable.

The MVPF can help compare against alternative estimates of the marginal cost of public funds

(MCPF). The MCPF is 1 in our model with lump-sum taxes, but it exceeds 1 in a more realistic

case where governments raise revenue through distortionary taxes.

16One could imagine potential modeling alternatives, such as separating producer surplus by whether vehicles are
assembled in the US or abroad, or whether the supply chain primarily reflects value chain components from US
allies versus other countries, or assuming a policymaker preference function which assigns positive weight to interest
groups like incomes of US auto workers, analogous to Grossman and Helpman (1994). We analyze domestic versus
foreign firms’ producer surplus since this partition is fairly standard in the multinationals literature (Tintelnot, 2017;
Arkolakis et al., 2018) and is symmetric to the domestic versus foreign components of the social cost of carbon.
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6.4 Constrained Optimal Policy

Theory This subsection discusses our methodology for estimating optimal uniform and differenti-

ated EV subsidies, subject to coverage restrictions.17 Our setting has two potential market failures:

over-consumption due to negative externalities ϕj and under-consumption due to markups µj . We

refer to the difference between price and social marginal cost, i.e. µj−ϕj , as the “price distortion.”

Below we present results when the MCPF is 1, but Appendix E shows the corresponding derivations

with a general MCPF, when financing subsidies generates additional distortions in the economy.

We also solve for the optimal consumption subsidy τ that applies equally to purchases and leases;

we do not separately consider the producer subsidy κ. In a standard model where statutory and

economic incidence are independent, τ and κ are perfect substitutes and infinite combinations of

the two yield the same welfare (Weyl and Fabinger, 2013).

Appendix E.1 derives the standard result that the first-best policy for a global planner (maxi-

mizing W ) implements a vector of choice-specific Pigouvian subsidies or taxes that offset the price

distortion: τFB
j = µj − ϕj .

18 Recall that τj < 0 represents a tax. In practice, the IRA and anal-

ogous subsidies in other countries may deviate from optimal policy for several reasons. National

policymakers may maximize domestic welfare, as in WUS or W̃US . Additionally, institutions or

political economy may limit policymakers to applying subsidies to EVs or another subset of choices,

such as vehicles meeting 30D requirements. Furthermore, policymakers may choose uniform rather

than vehicle-specific subsidies.

Our expression for the vector of second-best optimal differentiated subsidies τSB
S requires ad-

ditional notation. Let S denote the set of subsidized choices, and let \S denote its complement,

including the outside option. Define For as the set of foreign-owned firms. Proposition 1 shows

that the second-best differentiated subsidies for the US planner do not equal the price distortion

alone. Instead, they account for indirect substitution from the set of unsubsidized choices into S
and for the capture of subsidies by foreign-owned firms. (Recall that under the IRA, foreign-owned

firms can receive the 30D subsidy if assembly occurs in North America and all firms qualify for

the 45W subsidy.) Given the full matrix of demand derivatives Ω, with (j, r)-th element given

by ∂qr/∂pj , denote the submatrix ΩS as the subset of entries corresponding to rows and columns

j, r ∈ S. Correspondingly, denote the submatrix Ω\S as the subset of entries with rows j ∈ S and

columns r ∈ \S. These submatrices summarize aggregate substitution into S and away from \S in

response to subsidies.

Proposition 1. At an MCPF of one, second-best optimal differentiated subsidies for a subset of

choices are

17Holland et al. (2016) solve for the second-best differentiated and uniform EV subsidies, accounting for different
emissions rates in the electric grid across space. Building on their work, we incorporate market power distortions,
international profit shifting, distortionary taxation, and fatal car accidents.

18When the MCPF is greater than 1, the global planner equates the cost of the transfer to the government,
η × τFB

j , with the combined distortions in the economy from unpriced externalities and the transfers themselves,
µj −ϕj − (η−1)qj . This last term arises from transfers to inframarginal consumers, each of whom receives a marginal
unit of income at a cost of η to taxpayers.
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τSB
S = (µS − ϕS)︸ ︷︷ ︸

price distortion

+Ω−1
S Ω\S

(
µ\S − ϕ\S

)
︸ ︷︷ ︸

indirect substitution

+ Ω−1
S mFor︸ ︷︷ ︸

profit shifting

(13)

Proof. Appendix E.2.

Here µS −ϕS represents the vector of price distortions for subsidized choices (in S), µ\S −ϕ\S

is the vector of price distortions for unsubsidized choices (in \S), and mFor is the vector of foreign

firm profit changes in response to each subsidy τj ∈ τSB
S , e.g.

∑
r∈For

∂πr
∂τj

. Note that markups,

substitution, and profits on the right-hand side in equation (13) are all endogenous to subsidy

policy.

Equation (13) has a natural interpretation. At a global social cost of carbon, most EVs, like

most vehicles in general, have negative externalities that exceed their markups, implying a first-best

tax from the first term in (13). The second term, however, may justify subsidies to EVs if they

induce net substitution away from socially costly GVs.19 The third term in (13) supports taxing

EVs if foreign firms produce many targeted EVs (when mFor is generally positive). Alternatively,

the third term implies a subsidy if subsidies are directed to US firms (when mFor is generally

negative).

We also derive the analogous result for the uniform subsidy amount that maximizes US welfare,

τSB,U , which restricts the subsidy amount to be equal for all goods in S. In this setting, demand-

response weighted averages provide sufficient information. Define µ̄S ≡ (
∑

j∈S
dqj
dτ µj)/(

∑
j∈S

dqj
dτ ) as

the demand-response weighted average markup among S (correspondingly, µ̄\S among unsubsidized

goods) and ϕ̄S ≡ (
∑

j∈S
dqj
dτ ϕj)/(

∑
j∈S

dqj
dτ ) as the demand-response weighted average externality

among S.20

Proposition 2. At an MCPF of one, second-best optimal uniform subsidies for a subset of choices

are

τSB,U =
(
µ̄S − ϕ̄S

)︸ ︷︷ ︸
price distortion

−
(
µ̄\S − ϕ̄\S

)︸ ︷︷ ︸
indirect substitution

−

∑
j∈S

dqj
dτ

−1 ∑
j∈For

dπj
dτ


︸ ︷︷ ︸

profit shifting

(14)

Proof. Appendix E.3.

When only EVs receive a subsidy, the optimal uniform EV subsidy equals the demand response-

weighted difference in price distortions between EVs and non-EVs, minus the marginal profit shifted

19Whether the second term is positive depends the price distortion of each submodel in \S and the net substitution
patterns given by the rows ofΩ−1

S Ω\S . We cannot say much in general, other than to note that the own-price diagonal
elements of the substitution matrix Ω are strictly negative, the cross-price off-diagonal elements are strictly positive,
and Ω is weakly diagonal dominant (when augmented to include the outside option) by unit demand. If the own-price
derivative is large in magnitude relative to the cross-price derivatives, each row in Ω−1

S Ω\S will tend to have negative

elements and hence the dot product with negative elements in
(
µ\S − ϕ\S

)
will sum over positive terms.

20Specifically, µ̄\S ≡ (
∑

j∈\S
dqj
dτ

µj)/(
∑

j∈\S
dqj
dτ

) and ϕ̄\S ≡ (
∑

j∈\S
dqj
dτ

ϕj)/(
∑

j∈\S
dqj
dτ

).
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to foreign firms per marginal electric vehicle at the optimal subsidy level. Although equation (14)

describes three components, in some cases we aggregate the first two terms so that we report a

decomposition into two components—one representing environmental and markup distortions due

to encouraging sales of EVs in S and shifting sales away from vehicles in \S (the first two terms in

the equation); and the other representing a trade incentive to shift profits away from foreign firms.

The next section empirically implements a version of this decomposition, which provides further

evidence on the importance of environmental and market power distortions versus profit-shifting

in guiding EV policy.

We conclude this theory with two additional notes. We implement equations (13) and (14) by

treating the equation as a contraction mapping and re-computing markups, profits, and derivatives

in each iteration of subsidies. In the more general setting with an MCPF above one, equations (13)

and (14) each also has an additional term corresponding to tax distortions.

Descriptive Patterns of Price Distortions We close this section by illustrating the distribu-

tion of baseline (negative) price distortions across EVs and GVs in Figure 10, which play important

roles in equations (13) and (14) and will contribute to the constrained optimal subsidies the next

section recovers. This graph echoes the histogram of negative externalities in Figure 5, except it

uses the model-derived markup to infer social marginal cost.

Figure 10 shows several important properties about the distribution of price distortions. Panel

(a) shows that at a global social cost of carbon, negative externalities exceed markups for almost all

submodels. This implies that if policy applied to all vehicles, an EV tax rather than subsidy would

be optimal. Section 7 uses estimated substitution patterns to recover the optimal tax or subsidy

in a scenario where policy applies to only some EVs and not GVs. The graph shows substantial

dispersion within powertrains, driven by differences across submodels in fuel economy, weight, local

pollution, and markups. The magnitude of this dispersion implies that vehicle-specific differentiated

taxes or subsidies may generate efficiency gains relative to uniform EV subsidies. The market share-

weighted average distortions are about $6,800 for EVs and $10,800 for GVs. This implies that a

lower tax or higher subsidy for EVs will have indirect benefits through encouraging substitution

from GVs. Furthermore, within EVs, we note that Section 30D-eligible and Section 30D-ineligible

vehicles have average price distortions of $6,400 and $7,600 respectively. While smaller than the

difference between GVs and EVs, the strong within-EV substitution patterns our model estimates

means that this difference may be more relevant to our counterfactuals. In particular, it implies

that relaxing the 30D trade restrictions will tend to subsidize EVs that are more harmful, i.e., have

more negative uninternalized externalities.

Panel (b) of Figure 10 shows the same distributions, but valued at a domestic social cost of

carbon. Strikingly, this change to the cost of CO2 emissions brings the cost of externalities below

markups for the majority of vehicles, implying that the majority of vehicles are priced above their

domestic social marginal cost. Absent profit-shifting concerns, this suggests that for a US social

planner using the domestic SCC, optimal policy that applies all vehicles is a subsidy to correct for
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market power distortions, rather than a tax. Of course, an alternative avenue for policy, outside

the scope of our analysis, would be more aggressive antitrust policy.

7 Effects of Counterfactual Policies

We now use the equilibrium model from Section 6 to evaluate the short- to medium-term impact

of the IRA relative to counterfactual policies. Section 7.1 compares the IRA against two types

of repeals, eliminating EV credits or reverting to pre-IRA policy, and two trade reforms, a near-

removal of the leasing loophole or a lifting of the domestic assembly requirement. Section 7.2

studies constrained optimal EV subsidy policies, with and without requiring uniform EV subsidies

across submodels. Our model baseline period describes July and August 2023, which we choose

partly since our dealership survey in these months found fairly flexible supply chain conditions.

7.1 Results: Repeal of IRA EV Credits and Modification of Trade Restrictions

Repealing the IRA. Column 1 of Table 6 describes market outcomes observed with the IRA,

our baseline, in July and August 2023. Column 2 describes outcomes without any EV tax credits.

Column 3 describes outcomes if policy had continued providing the pre-IRA Section 30D EV credits,

under which full $7,500 purchase and lease credits were available for the first 200,000 EVs each

manufacturer sold, and then phased out in the year after the manufacturer reached that limit.21

Columns 2 and 3 of Table 6 show that turning off all EV credits or reverting to pre-IRA policy

both decrease EV registrations, due to the loss of the tax credits. Row 4 shows that eliminating the

IRA EV credits would decrease registrations of all EVs by 27 percent, or 317,000 EVs annually.22

Row 5 shows that eliminating the IRA EV credits would also decrease registrations of US firms’

EVs by 37 percent, or 310,000 annually. Row 6 shows that eliminating the credits would barely

change registrations of foreign firms’ EVs, so the impact of a repeal would largely be on domestic

firms. Row 7 shows that eliminating IRA EV credits would decrease the EV share of new vehicle

registrations by 2.9 percentage points. Column 3 shows that reverting from IRA to pre-IRA policy

has impact one-third these magnitudes. Row 8 shows that these counterfactuals decrease leasing

by a remarkable 16 percentage points, or just over half relative to baseline leasing rates, because

they remove the strong leasing incentive of the IRA’s leasing loophole.

Germany provides one benchmark for these estimates. In December 2023, Germany removed

a $4,900 EV subsidy. Annualized EV sales in the first 10 months of 2024 in Germany fell by 26.6

percent (European Automobile Manufacturers’ Association 2024). While the setting and magnitude

of those subsidies differ substantially from the US subsidies we study, and while the statistic from

Germany provides a time series correlation that may reflect other economic shocks, the magnitude

21As of July and August 2023, Tesla and GM would have received τ = κ = 0, Toyota and Ford would have received
τ = κ = $7500/4, BMW and Stellantis would have received τ = κ = $7500/2, and all other firms would have received
τ = κ = $7500. By 2024, additional manufacturers would have reached their 200,000 limit, and the pre-IRA Section
30D would have soon implied no tax credits available for any major manufacturer.

22“Registrations” sums leases and purchases.
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of the change in EV sales in Germany is comparable to our short- to medium-run projection that

repealing the US IRA EV credits would decrease US EV registrations by 27 percent.

These counterfactuals in Table 6, columns 2 and 3, require substantial government spending

per additional EV registered. Relative to a scenario with no EV credits, the IRA spends $23,000 of

government revenue per incremental EV registration. Relative to pre-IRA policy with phaseout, the

IRA spends $32,000 per incremental EV registration. Given credit value of $7,500, these statistics

imply that 23 percent to 33 percent of EV credits are additional ($7,500/$32,000 or $7,500/$23,000),
and the rest are inframarginal.

As a benchmark, some environmental policies in other domains have broadly similar addition-

ality rates, though some research laments these values as low. For example, Aspelund and Russo

(2024)’s regression discontinuity estimate indicates that 21 to 31 percent of US Conservation Re-

serve Program contracts for farm conservation are additional. Chen et al. (2024)’s model-based

analysis of the market for carbon offsets in China finds that 28 percent of all firms are additional,

though 64 percent of registrants are additional.

Several parts of Table 6, columns 2 and 3, show that repealing the IRA credits decreases

registrations of vehicles made by US firms but increases registrations of vehicles made by foreign

firms. Under a return to pre-IRA policy, foreign EV registrations increase by 67 percent. These

repeals decrease the US assembly share of EVs by 10 to 22 percentage points.23 Again, these

large magnitudes occur because the IRA generates a strong preference towards US firms, while pre-

IRA credits privileged foreign firms. Table 6 shows that returning to pre-IRA policy has similarly

asymmetric effects on foreign versus domestic welfare. Rows 19 through 21 show that reverting

to pre-IRA policy decreases US welfare but increases foreign welfare. Despite decreasing the EV

market size, this reform still benefits foreign producers by removing domestic preferences in current

policy, and therefore improves foreign welfare.

Breaking up welfare into its components helps explain these welfare effects. Panel (b) of Table

6 shows that repealing the IRA’s EV credits decreases US surplus because it harms consumers and

harms US producers. This counterfactual has complex effects on externalities. While both types of

repeal increase CO2 emissions, eliminating EV credits decreases US externalities at the domestic

SCC but increases them at the global SCC, partly since EVs generate fatal accident externalities.

Returning to pre-IRA policy increases US externalities regardless of the SCC. While repealing the

credits saves billions in annual government spending, losses in other components of US welfare

outweigh this savings, which is why repealing the IRA’s EV credits decreases US welfare.

As Section 6.3 discussed, the MVPFs in panel (d) of Table 6 are most easily thought of as

reflecting the value of additional government spending in the higher-spending scenario. Relative to

a no-credit or a pre-IRA baseline, the IRA credits generate 1 to 2.1 dollars of net value per dollar

23Two reasons may explain the contrast between this finding from our equilibrium model and the somewhat flat
North American assembly share of EV in Figure 4, panel (b). As Section 4 discussed, the introduction of new foreign
EV submodels in late 2022 might have decreased the North American assembly share of EV submodels in the IRA’s
absence. Additionally, this contrast may reflect the annual versus short-run demand elasticity difference between
monthly time-series data and the equilibrium model.
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of spending.

Surprisingly, the US planner has a higher MVPF for the EV credits, relative to pre-IRA policy,

than the global planner does. Table 6 shows that the US planner’s MVPF is 1.9 to 2.1 using the

domestic or global SCC; the global planner’s MVPF is only 1.3. This is surprising because in typical

climate change settings, the global planner values national greenhouse gas mitigation more than the

national planner does, since greenhouse gas mitigation is a global public good. Comparing the IRA

EV credits to pre-IRA policy reveals the opposite of this typical setting. Profit shifting explains

why—the EV subsidies shift profits from foreign to US firms, which increases the US MVPF. The

global planner is indifferent about whether producer surplus accrues to US or non-US firms, and

so derives smaller benefits from the EV subsidies.

Overall, the asymmetric effects of an IRA repeal between domestic and foreign outcomes and

between trade and the environment illustrate broader challenges in green industrial policy. The IRA

decreases both CO2 emissions and vehicle registrations from foreign firms. Carbon mitigation co-

operatively addresses global negative externalities while profit shifting non-cooperatively decreases

foreign welfare. This tension explains the conflicted responses from foreign leaders to the IRA

discussed in the introduction, who appreciate that the US is seriously addressing climate change

but lament that it is doing so via profit shifting. This asymmetry between the IRA’s domestic and

foreign impacts also reflects domestic political economy: passing the IRA involved support from

domestic manufacturing and labor interest groups, who valued the IRA’s trade restrictions, and

environmental interest groups, who valued its climate change mitigation.

Appendix Tables A4 and A5 show several sensitivity analyses in column 1. We consider a

setting with a marginal cost of public funds equal to 1.4, which Finkelstein and Hendren (2020)

summarize as a standard benchmark; we consider alternative social cost of carbon equal to $100
or $200, and we consider an alternative demand elasticity of -4. With a marginal cost of public

funds equal to 1.4, compared to no EV credits, the IRA EV credits decrease US and global welfare.

In most scenarios, the change in US surplus exceeds the change in global surplus, due to profit

shifting. Additionally, when we recreate Table 6 under a supply side that satisfies the Nocke-

Schutz restrictions that ensure a unique price equilibrium (not shown for space), the results are

extremely similar, which suggests our findings are robust to our definition of firms.

Modifying Trade Restrictions. Columns 4 and 5 of Table 6 largely close the leasing loophole

by adding trade restrictions for leases or removing them for purchases. These counterfactuals do

not completely close the leasing loophole because they leave the IRA’s income and MSRP eligibility

restrictions on purchases unchanged.

In Table 6, the trade restrictions in column 4 versus the trade relaxation in column 5 generally

produce opposite-signed effects on market outcomes. Adding trade restrictions to leases slightly

decreases EV registrations, while removing trade restrictions moderately increases EV registrations.

Both counterfactuals decrease the lease share by half relative to the baseline lease rate, since both

counterfactuals treat purchases and leases symmetrically. Adding trade restrictions increases the

US assembly share, while removing trade restrictions considerably decreases the US assembly share.
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Effects of these trade counterfactuals on welfare in Table 6, columns 4 and 5, also shed light

on IRA design choices. Both counterfactuals produce opposite-signed impacts on foreign versus

US producer surplus, due to profit-shifting. Restricting trade increases CO2 emissions while liber-

alizing trade decreases CO2 emissions. Additional EV registrations do increase domestic negative

externalities, due to EVs’ greater weight than GVs and the associated fatal accident externality.

Rows 25-27 again reveal somewhat different welfare conclusions from the perspectives of different

planners. Both columns show the leasing loophole has an MVPF below one from the global plan-

ner’s perspective.24 Column 5 is especially interesting—the US planner does not want to remove

the trade restrictions, reflected by MVPFs of 0.6 to 0.8, but a global planner might, with a global

MVPF of 1.3. This gap between the MVPFs of the domestic and global planners demonstrates why

climate policy is challenging—the climate is a global public good, so every country has an incentive

to free-ride, and global benefits from CO2 mitigation greatly exceed domestic benefits.

In summary, this analysis of trade restrictions reveals tradeoffs between trade and the environ-

ment, and between foreign and domestic firms. Liberalizing trade makes US consumers better off,

by increasing the choice set of subsidized vehicles, and increases EV registrations, thereby reducing

global negative externalities, but harms domestic producers. The greater weight and electricity

consumption of “foreign” (30D-ineligible) models moderates this tradeoff. This asymmetry also

illustrates why these counterfactuals can produce opposite-signed effects on foreign externalities

and foreign welfare—they harm foreign countries despite decreasing CO2 emissions.

7.2 Results: Optimal Policies

Optimal policies. The previous subsection examines specific and potentially realistic reforms to

the IRA’s EV credits, including repeals. We now turn to consider optimal design of EV credits,

subject to specific political economy or other institutional constraints, and following the theoretical

description of constrained optimal subsidies in Section 6.4. These counterfactual scenarios have

less immediate policy feasibility—for example, we do not imagine that the US government will

implement an optimal, submodel-specific subsidy at any foreseeable point. Instead, we investigate

these scenarios to learn about general types of EV policy reforms that may increase welfare. We

particularly scrutinize tradeoffs between global and national planners’ perspectives and benefits of

accounting for heterogeneous externalities among EVs.

Of course, this analysis of constrained optimal policies, like our evaluation of reforms to IRA

EV credits, depends on our model and its inputs, particularly our externality assumptions. Larger

externality reductions from EVs relative to GVs generally make EV subsidies have larger estimated

benefits, while smaller assumed externality reductions make EV subsidies look worse. Although

we use mainstream and leading model assumptions and data inputs, we nonetheless interpret the

quantification of optimal policy cautiously, and focus interpretation more on general patterns than

24Because column 4 of Table 6 decreases government spending, the MVPF describes the higher-spending alternative,
i.e., it describes the MVPF of the leasing loophole. The column MVPF represents effects of eliminating the loophole
by removing trade restrictions for purchases.
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exact magnitudes.

Table 7 has similar structure as Table 6. Column 1 shows the IRA baseline. The counterfactual

in column 2 preserves the IRA’s 30D restrictions on which submodels qualify for subsidies, but

replaces the $7,500 IRA subsidy with the uniform subsidy value that maximizes US total surplus.

We apply these restrictions to the submodel as a whole and allow both purchases and leases to

claim the subsidy if a submodel is eligible. Column 2 describes the optimal choice for a social

planner that cares about US welfare, uses the national social cost of carbon, and (for exogenous,

perhaps institutional reasons) must set a uniform subsidy with the current 30D vehicle eligibility

restrictions. Column 3 lets the planner choose different subsidies for each submodel. Column

4 assumes the planner cares about the global SCC rather than the domestic SCC. We estimate

the uniform subsidy in column 2 using equation (14); we estimate the differentiated subsidies in

columns 3 and 4 using equation (13). Rows in Table 7 have the same ordering as rows in Table 6,

except that the top shows the sales-weighted average subsidy across submodels that was found to

be optimal, and panels show the difference relative to a no-EV subsidy baseline.

We choose these counterfactuals for several reasons. Given constraints on the submodels sub-

sidized and differentiation, these scenarios provide some information on the optimality of IRA

subsidies in our model. Comparing uniform with differentiated subsidies (columns 2 and 3) clarifies

the gains from differentiation. Comparing policy with a domestic versus global SCC (columns 3

and 4) clarifies impacts of global versus national environmental perspective.

Column 2 of Table 7 shows that our estimated US optimal uniform subsidy is $6,355, assuming

US policymakers are constrained to choose a uniform subsidy for 30D-eligible submodels. Interest-

ingly, this is only about ten percent below the actual IRA mean credit amount shown in column

1.25 We do not believe that policymakers in 2022 purposefully chose the actual credit value; they

inherited the $7,500 value in nominal terms from policies years earlier and chose to revise qualifying

standards but not subsidy magnitude. Relative to the IRA baseline in column 1, this slightly lower

subsidy decreases EV registrations by about 75,000 per year and decreases the EV leasing rate by

half, since it turns off the leasing loophole. Decreasing the uniform subsidy from the IRA baseline

to the column 2 optimum increases US welfare by $1 to 2 billion annually.

Appendix Table A4 revisits this calculation of optimal uniform subsidies under alternative

assumptions. Under the global SCC, panel (e) shows a uniform optimal EV subsidy of $9,700, and
a mean optimal differentiated subsidy of $14,000. Although Figure 10, panel (a), implies that the

optimal policy applied to all vehicles and under the global SCC would be a tax, we find that the

optimal policy applied only to the 30D-eligible is a subsidy. This sign change between tax and

subsidy occurs because the constrained optimal policy does not tax GVs, and encourages sufficient

substitution from GVs to EVs that subsidizing EVs becomes optimal, highlighting the role of the

substitution terms of our optimal subsidy formulas in equations (13) and (14). Appendix Table

A4 also revisits results using an MCPF of 1.4, reflecting the deadweight loss of taxation. Here the

25The actual mean IRA credit amount, shown in column 1, is slightly below $7500 because some vehicles only
qualify for $3,750 in credits.
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optimal uniform EV subsidy is about $1,000 with a domestic SCC and $3,000 with a global SCC,

or under a third of what Table 7 finds assuming an MCPF of 1.

Appendix Table A6 applies the decomposition from equation (14) of the constrained optimal

uniform subsidies in Table 7. It decomposes these subsidies into four components—price distortions

(markups and externalities); indirect substitution; profit shifting; and tax distortion.26 We find that

the profit shifting motive is large, regardless of the SCC and MCPF assumptions.27 First consider a

setting with a global SCC and MCPF of 1, which Table A4 panel (e) shows has an optimal uniform

subsidy of $9,700. This setting provides perhaps the largest scope for environmental benefits relative

to non-environmental concerns. Appendix Table A6 shows that here the profit component is about

$3,000, while distortions account for the remaining $6,700. In this scenario, reducing distortions

(market power and externalities) has twice the importance of profit shifting in guiding optimal

policy. Alternatively, consider a scenario with a domestic SCC and MCPF of 1.4, which Table A4,

panel (a), indicates has optimal uniform subsidy of about $1,100. This setting gives the least scope

for environmental concerns and further adds in the fiscal distortion from taxation. Here Appendix

Table A6 shows that the profit shifting component of optimal subsidies is about $2,600 while the

environmental and markup distortions account for $1,900. However, the tax distortion component

is -$3,400.
What do these results indicate about the weight that US policymakers put on foreign climate

benefits? On one hand, the Table 7 finding that the IRA subsidies are somewhat near the optimal

value we calculate under a domestic SCC, and well below the optimal value we calculate under

a global SCC, might suggest that policymakers effectively used the domestic SCC, and put little

weight on foreign climate benefits. This would contrast with the US government’s stated policy to

use the global SCC (US EPA 2023a) in regulatory design and analysis. On the other hand, the

Table A4 finding that under an MCPF of 1.4, the optimal uniform EV subsidy with either the

domestic or foreign SCC is far below the IRA’s actual value would suggest that other forces besides

weight on foreign climate benefits determined the magnitude of these subsidies. Complicating these

considerations is the reality that the $7,500 value was chosen long ago, and the IRA merely left

it unchanged. Moreover, our optimal subsidy amounts depend on our externality assumptions.

Ultimately, we believe the question of what weight US policymakers put on foreign climate benefits

is fascinating and little-studied, but this setting contains insufficient information to conclusively

answer it.

Column 2 of Table 7 shows the optimal uniform subsidy, while column 3 shows the optimal

differentiated subsidy, so comparing them shows effects of differentiation. The optimal differentiated

subsidy spends more for the mean vehicle, at $8,916, than the optimal uniform subsidy does. This

26The tax distortion component exceeds zero only when MCPF>1, so this term does not appear in the main text
equations (13) and (14) that assume MCPF=1, but does appear in the appendix formulas (31) and (38) that allow
MCPF>1.

27All three counterfactual second-best optimal subsidies decrease foreign producer surplus relative to the IRA base-
line. In each counterfactual, producer surplus falls most in Japan, followed by South Korea, Germany, then Sweden.
These four countries have among the highest baseline EV registrations in the US. For example, the differentiated
subsidy using the global SCC decreases annual Japanese producer surplus by $1.3 billion annually.
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happens because the optimal subsidy assigns large amounts to popular vehicles like the Tesla

Model 3 and Model Y ($12,000 and $8,300). Other vehicles, like the credit-eligible PHEVs, have

subsidies of $4,300 or less. This disparity shifts market share within EVs toward the more-subsidized

submodels, increasing the average subsidy amount received. However, subsidy differentiation only

slightly increases the EV market share overall, by half a percentage point. At the same time,

differentiation increases US producer and consumer surplus and decreases US externalities, but

increases government spending. In total, the differentiated subsidy obtains 75 percent greater

welfare gain than the uniform subsidy, or equivalently, the uniform subsidy achieves only 57 percent

(=1.94/3.43) of the domestic welfare gain of the differentiated subsidy.

Despite this large magnitude, the MVPFs of the uniform and differentiated subsidy have similar

values. This comparison illustrates one characteristic of the MVPF—it ranks policies per dollar

spent. For comparing policies that have different optimal size, however, a comparison of MVPFs

does not provide information on total benefits or differences in scale. Thus, while the uniform and

differentiated policy have similar MVPFs, the differentiated policy has far larger net benefits since

our calculations indicate that it has larger optimal scale.

Table 7 shows the optimal differentiated subsidy using the US SCC in column 3 and the global

SCC in column 4. Comparing them shows consequences of adopting a global environmental per-

spective. Row 24 shows that optimal policy using the global SCC decreases CO2 by twice as much

as optimal policy using the domestic SCC. In other words, shifting from a national to a global SCC

in the policymaker’s objective function while maintaining the focus on domestic producer surplus

doubles this policy’s climate benefits. This reflects an increase in the EV market share from 11 to

13 percent. The US assembly share of EVs also increases from 76 percent under a policy using the

national SCC to 83 percent under policy using the global SCC.

Table 7 also shows complex welfare effects due to shifting from a domestic to a global SCC

in policy design, seen from comparing columns 3 and 4. US consumer and producer surplus and

government spending all roughly double due to using the global SCC, while US negative externalities

change much less. These subsidies increase US surplus using the global SCC, though they decrease

US surplus using the domestic SCC.

Table 7, Panel (d) describes these reforms’ MVPFs. All these MVPFs exceed one, for both the

global and US planners, though they are all below 1.5, which puts them in the range of common

assumptions about the MCPF. In other words, these reforms may modestly increase welfare, but

welfare conclusions ultimately depend on assumptions about the deadweight loss of taxation.

8 Conclusion

The IRA was forecast to cost up to a trillion dollars (Bistline, Mehrotra and Wolfram 2023),

making it potentially the most costly climate change investment in human history. At the same

time, the 2024 election of Donald Trump and a Republican congress has made its drastic reform

a prominent policy discussion. We provide the first ex post microeconomic welfare analysis of a
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central component of this legislation. We study what may be the IRA’s most controversial and costly

component: tax credits to subsidize the purchase of new EVs, partly conditional on requirements

that supply chains locate in the US or allied countries. We assemble detailed data from numerous

sources on vehicle prices, quantities, leasing, subsidies, and environmental impacts. We also use

this setting to investigate more general lessons on policy for electric vehicles with heterogeneous

externalities and on tradeoffs between foreign and domestic interests and between trade and the

environment in this example of green industrial policy.

In the IRA’s inaugural year, our short-run event study analysis finds little impact on producer

transaction prices. Because the IRA had consumers claim these credits on the subsequent year’s

taxes, this finding implies that consumers received most of the credits’ price impact. Event studies

also show that the credits substantially increased leasing, in line with trade, income, and price

restrictions on eligibility for EV purchases.

To study effects of counterfactual policies, we lay out an equilibrium model of vehicle supply

and demand. In the model, the IRA’s EV credits have an MVPF of 1 to 2, through shifting profits

from foreign to domestic firms and decreasing negative externalities, though several scenarios have

substantially different consequences from the global versus US perspective.

Our analysis of the IRA’s EV credits highlights the important role of heterogeneity in external-

ities among EVs more broadly. Countries are implementing a wide range of policies to encourage

vehicle electrification, many without a focus on which EVs consumers adopt. We find that the

variation in externalities within EVs versus GVs have similar magnitudes, and that failing to price

heterogeneous EV externalities misses substantial opportunities for policy to increase welfare.

More broadly, our analysis highlights tradeoffs in green industrial policy between foreign and

domestic interests, and between trade and the environment. Traditionally, trade policy either repre-

sents a cooperative instrument (e.g., Most Favored Nation tariffs) or a non-cooperative instrument

(e.g., the “Schedule 2” tariffs that would apply to US imports from North Korea). Green industrial

policy, unusually, has both cooperative and non-cooperative elements within a single policy. The

industrial policy component is non-cooperative, as it seeks to exploit profit shifting to relocate

growing clean energy production domestically. The green component invests in a global public

good that partly benefits foreign countries, and may even use a cooperative perspective on the en-

vironmental externality (e.g., the global SCC) to design and evaluate regulation. Green industrial

policy accounts for a growing focus with potentially trillions of dollars of investment from the US,

EU, China, and other regions.

While economists lament that countries are increasingly using trade restrictions to advance

climate change policy, partly led by the IRA, some policymakers celebrate rather than lament this

combination. The global public goods nature of climate change mitigation can make voters and pol-

icymakers reluctant to implement unilaterally stringent climate mitigation. Pairing climate change

policy with trade restrictions has provided political support for a growing set of green policies. Our

analyses help illustrate why—incorporating profit shifting into the domestic assessment of green

policy increases its domestic welfare gains, though generally at the expense of foreign surplus. Of
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course, as more countries pair trade restrictions with climate change policy, global costs of trade

restrictions grow.

We leave several unanswered questions. Focusing specifically on EV credits, an important line

of inquiry can study longer-run impacts, as resulting relocation of supply chains, learning-by-doing,

and interactions with EV charging infrastructure could generate large welfare and distributional

effects. In addition, while we study what may be the most costly of the IRA’s provisions, political

and economic controversy over the IRA’s value and impacts make broader analysis of the IRA an

important topic for ongoing and future research. Many of the IRA’s over 80 separate components

have some attributes in common with the EV credits we study—domestic content requirements, tax

credits for green technologies, and extensions of prior and smaller tax credits. Understanding what

conclusions generalize across provisions of the IRA would be valuable. Additionally, in response to

the IRA, US trading partners are considering or implementing their own green industrial policies.

Just as research has studied Nash tariffs by nesting quantitative trade models within a game

between countries (Ossa 2014), so too it might be informative to study how the incentives for

green industrial policy change when analyzing it as strategic environmental policy choice among

countries. Furthermore, our results reflect our externality assumptions; improving knowledge of

the magnitudes of heterogeneous externalities across submodels of EVs and GVs will be critical to

designing optimal policy. Finally, while we estimate low additionality of 25% from these subsidies, it

is possible that reforms to other aspects of subsidies such as household eligibility criteria, marketing,

or other attributes could increase additionality and thus cost effectiveness.

Another question we do not fully explore involves explanation of the tensions in green industrial

policy that we highlight. Why do countries design climate policy that benefits foreign countries,

but via industrial policy, which non-cooperatively shifts profits? Relatedly, what weight do policy-

makers in one country effectively put on environmental benefits abroad? Although a zero weight

would reflect non-cooperative policy, regular international negotiations encourage weights above

zero (but perhaps not equal to one) on foreign climate benefits. While political economy likely

contributes to these decisions, its exact mechanisms are unclear. The role of interest groups likely

plays a role—organized lobbies like auto firms benefit from industrial policy and create domestic

political pressure for such non-cooperative policy. The structure of benefits may also contribute—

international competition in industrial policy for a given industry to some extent reflects a zero-sum

game, while the climate is a global public good.

Domestic content restrictions and industrial policy are growing as countries both seek politically

feasible policies to work around existing trade agreements that focus on tariffs and also seek to

expand market share in rapidly-growing green technology markets. While these policies are clearly

not first-best, better understanding the cost-effectiveness, efficiency, distributional consequences,

political economy, and externalities of these increasingly common second-best policies would be

valuable for researchers and policymakers.
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Table 1: Summary Statistics

Mean Std. dev. Min. Max. Obs.
Registrations 1,079 1,887 26 38,781 19,019
Purchase price ($000s) 51.3 19.3 12.7 96.7 17,691
Lease price ($000s) 48.1 20.9 16.3 372.3 15,746
Percent leased 25.1 17.8 0 100 19,019

Notes: This table presents summary statistics for our submodel-by-month panel of new vehicle
sales and prices for 2022 and 2023. Registration counts are from Experian. Prices are from Cox
Automotive. We use nominal prices, without any inflation adjustment.

Table 2: Share-Weighted Average Externalities by Vehicle Powertrain

(1) (2) (3) (4) (5)
Electric Vehicles

All EVs
Battery electric

vehicles
Plug-in
hybrids

Gasoline
vehicles

Structural model
outside option
(used GVs)

Manufacturing CO2 (global SCC) 2,719 2,902 1,835 1,813 –
Driving CO2 (global SCC) 7,273 6,444 11,282 13,833 13,833
Driving local pollutants 2,294 2,256 2,481 378 378
Excess weight in accidents 9,277 9,114 10,069 7,068 7,068
Positive fiscal externality 5,560 5,531 5,703 3,854 3,854
Total negative externality
Global SCC 16,003 15,185 19,964 19,239 17,425
Domestic SCC 7,162 6,915 8,357 5,393 5,184

Notes: This table presents market share-weighted average lifetime externalities across submodels
within a powertrain, weighting submodels by average monthly sales in months when the submodel
was available. Units are $/vehicle.

Table 3: Parameter Assumptions and Empirical Moments

Parameter Source
Target
Value

Model
Value

Market size (million/year)

U.S. Census Bureau
(2024), from Federal

Reserve Bank of St. Louis
(2024c)

21.9 –

Model-level demand elasticity Grieco et al. (2024) -5.36 -5.36

Share of EV buyers whose 2nd choice is EV NVES 52% 52%

Share of EV buyers whose 2nd choice is an EV
in the same vehicle class

NVES 33% 33%

Excluded Aug 2022 group lease share effect Appendix Table A2 39% 39%

Notes: This table presents empirical moments we match and other parameter assumptions used in
the demand estimation in Section 6.
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Table 4: Parameter Estimates

Parameter Description Value
α Price response parameter 0.661
σg EV-GV nest parameter 0.377
σc Class nest parameter 0.495
σk Submodel nest parameter 0.844

Notes: This table presents parameter estimates from the demand estimation in Section 6.

Table 5: Moments Not Formally Targeted: Measures of Model Fit

Statistic Model Value Reference Value
Panel (a) Second Choice Measures
Share of GV buyers with GV second choice 94.3% 97.0% (NVES)
Average MPG(e) of second choice, EV buyers 64.0 66.7 (NVES)
Average MPG(e) of second choice, GV buyers 30.7 27.1 (NVES)
Correlation (unweighted), class-powertrain
aggregate second choices

0.74
(Figure 9)

Correlation (share-weighted), class-powertrain
aggregate second choices

0.88
(Figure 9)

Panel (b): Price Measures

Aggregate new vehicle market demand elasticity
-1.4

(-1.1, Appendix Table A5)

-1 (Berry et al., 2004)
-1.29 (Grieco et al., 2024)
-0.92 (Allcott et al., 2023)

Pass-through of lease credits to lease prices
relative to buy prices

$7,500
$4,055 to $7,299

(Appendix Table A2)

Pass-through of IRA credits to purchase prices $7,186
$6,879 to $8,865
(Section 5.2)

Share-weighted average markup 17% (EV), 20% (GV) 22% (Grieco et al., 2024)

Notes: This table presents statistics on data moments that we do not formally target, as discussed
near the end of Section 6.2. All second choice statistics are weighted by the market share (or survey
share) of the first choice unless otherwise specified.

47



Table 6: Counterfactual Simulation Results

(1) (2) (3) (4) (5)

Repeal IRA Modify Trade Limits

IRA

(baseline)

Eliminate

EV Credits

Return to

Pre-IRA

30D with

phaseout

IRA, add

trade

restrictions

on leases

IRA,

remove

trade

restrictions

Panel (a): Market Aggregates under Counterfactual Scenario

1. Vehicle registrations (000s/year) 10,580 10,406 10,530 10,547 10,671

2. US firms (000s/year) 3,965 3,704 3,656 3,972 3,922

3. Foreign firms (000s/year) 6,615 6,702 6,875 6,576 6,749

4. EV registrations (000s/year) 1,184 867 1,095 1,123 1,351

5. US firms (000s/year) 835 525 509 832 815

6. Foreign firms (000s/year) 349 342 586 291 536

7. EV market share (%) 11.2 8.33 10.4 10.6 12.7

8. Lease share, within EVs (%) 29.3 12.2 13.0 13.2 14.4

9. US assembly share, within EVs (%) 70.5 59.9 48.5 74.3 59.7

Panel (b): Surplus Effects Relative to IRA Baseline ($billion/year)

10. ∆US consumer surplus - -5.07 -1.47 -0.97 2.65

11. ∆Global producer surplus - -2.12 -1.32 -0.06 0.37

12. ∆US producer surplus - -2.94 -3.71 0.26 -0.84

13. ∆Foreign producer surplus - 0.81 2.40 -0.32 1.21

14. ∆Global neg. externalities (global SCC) - 0.87 0.86 -0.06 -0.29

15. ∆US neg. externalities (domestic SCC) - -0.52 0.14 -0.18 0.30

16. ∆Foreign neg. externalities (foreign SCC) - 1.39 0.73 0.12 -0.59

17. ∆US government spending - -7.38 -2.84 -1.57 2.48

18. ∆Global surplus - -0.69 -0.81 0.60 0.83

19. ∆US total surplus (global SCC) - -1.50 -3.21 0.92 -0.38

20. ∆US total surplus (domestic SCC) -0.11 -2.48 1.04 -0.97

21. ∆Foreign total surplus (foreign SCC) -0.57 1.67 -0.44 1.80

Panel (c): Impacts on CO2

22. ∆CO2 emissions (million tons/year) 6.51 3.41 0.58 -2.77

23. Global cost/ton CO2 abated ($/ton) - 135 4.28 1,271 -58.9

24. US cost/ton CO2 abated ($/ton) - 10.1 -698 1,824 376

Panel (d): MVPF of Higher-Spending versus Lower-Spending Scenario

25. Global MVPF - 1.09 1.28 0.62 1.33

26. US MVPF (global SCC) - 1.20 2.13 0.42 0.85

27. US MVPF (domestic SCC) - 1.02 1.87 0.34 0.61

28. Cost per additional EV ($000s/EV) 23.2 32.0 25.7 14.9
Notes: This table presents counterfactual simulation results for the IRA and alternative policies. In column 2, all 30D and
45W credits are set to zero. In column 3, we simulate EV credits as they would have been in July-August 2023 had the IRA
not passed. Under the pre-IRA Section 30D, all EVs (purchased or leased) are eligible for credits until the 200,000-vehicle cap.
Given cumulative sales volumes through mid-2023, we assume no credit for Chevrolet and Tesla, 1/4 credit for Toyota and
Ford, 1/2 credit for BMW and Stellantis. In column 4, we mostly close the “leasing loophole” by adding the Section 30D trade
restrictions to all leases, although the buyer income restrictions and MSRP caps still do not apply to leases. In column 5, all
vehicles are eligible under Section 30D regardless of assembly location or battery sourcing, although buyer income restrictions
and MSRP caps still apply. New vehicle registrations include only leases and purchases by individuals, not vehicles sold to
organizations. The marginal value of public funds (MVPF) equals (∆consumer surplus + ∆producer surplus - ∆negative
externalities)/(∆ government spending). The “US MVPF” values are computed with ∆US producer surplus in the numerator,
while the “Global MVPF” uses ∆global producer surplus in the numerator. “US total surplus” equals “[global] total surplus”
minus foreign automakers’ producer surplus.”Foreign SCC” is global SCC minus US SCC. Costs of abatement are negative
when a policy change results in lower carbon emissions but is welfare-positive even when disregarding carbon damages. Cost
per additional EV is the ratio of ∆government spending to ∆new EVs registered.
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Table 7: Counterfactual Simulation Results: Optimal Subsidies

(1) (2) (3) (4)

IRA

US-optimal
uniform EV
subsidy
with

30D

restrictions

US-optimal
differenti-
ated EV
subsidy
with

30D

restrictions

US-optimal
differenti-
ated EV
subsidy
with

30D

restrictions,

global SCC

Panel (a): Market Aggregates under Counterfactual Scenario

1. Mean EV subsidy in this counterfactual $7,180 $6,355 $8,916 $14,331
2. (Standard deviation) (1,048) (0) (3,362) (4,260)

3. Vehicle registrations (000s/year) 10,580 10,540 10,574 10,721

4. US firms 3,965 3,964 4,053 4,322

5. Foreign firms 6,615 6,577 6,521 6,399

6. EV registrations (000s/year) 1,184 1,111 1,172 1,438

7. US firms 835 823 921 1,230

8. Foreign firms 349 288 251 208

9. EV market share (%) 11.2 10.5 11.1 13.4

10. Lease share, within EVs (%) 29.3 13.6 11.5 10.9

11. US assembly share, within EVs (%) 70.5 72.6 75.3 82.6

Panel (b): Surplus Effects Relative to No EV Subsidy Baseline ($billion/year)

12. ∆US consumer surplus 5.07 3.90 4.88 9.21

13. ∆Global producer surplus 2.12 1.70 3.06 6.25

14. ∆US producer surplus 2.94 2.82 4.64 8.88

15. ∆Foreign producer surplus -0.81 -1.12 -1.58 -2.63

16. ∆Global neg. externalities (global SCC) -0.87 -0.45 -1.95 -3.59

17. ∆US neg. externalities (domestic SCC) 0.52 0.52 -0.23 -0.26

18. ∆Foreign neg. externalities (foreign SCC) -1.39 -0.98 -1.72 -3.33

19. ∆US government spending 7.38 5.23 8.04 17.5

20. ∆Global surplus 0.69 0.82 1.84 1.52

21. ∆US total surplus (global SCC) 1.50 1.94 3.43 4.15

22. ∆US total surplus (domestic SCC) 0.11 0.97 1.71 0.82

23. ∆Foreign total surplus (foreign SCC) 0.57 -0.14 0.13 0.69

Panel (c): Impacts on CO2

24. ∆CO2 emissions (million tons/year) -6.51 -4.59 -8.06 -15.6

25. Global cost/ton CO2 abated ($/ton) 135 62.0 11.8 144

26. US cost/ton CO2 abated ($/ton) 10.1 -183 -185 -25.0

Panel (d): MVPF versus No EV Subsidy

27. Global MVPF 1.09 1.16 1.23 1.09

28. US MVPF (global SCC) 1.20 1.37 1.43 1.24

29. US MVPF (domestic SCC) 1.02 1.18 1.21 1.05

30. Cost per additional EV ($000s/EV) 23.2 21.4 26.4 30.7
Notes: This table presents counterfactual simulation results for the IRA and alternative policies, relative to a common baseline
of no EV subsidies (Coleman 2 in Table 6). In column 2, we simulate the uniform EV subsidy, subject to Section 30D trade
restrictions, that maximizes US total surplus with the domestic SCC. In column 3, we simulate the choice-specific differentiated
EV subsidy that maximizes US total surplus with the domestic SCC. In column 4, we simulate the choice-specific deifferentiated
EV subsidy that maxiumizes US total surplus with the global SCC. New vehicle registrations include only leases and purchases
by individuals, not vehicles sold to organizations. Mean and standard deviation of subsidies are sales-weighted across EV models
that are eligible to receive the credits under Section 30D. The marginal value of public funds (MVPF) equals (∆consumer surplus
+ ∆producer surplus - ∆negative externalities)/(∆ government spending). The “US MVPF” values are computed with ∆US
producer surplus in the numerator, while the “Global MVPF” uses ∆global producer surplus in the numerator. “US total
surplus” equals “[global] total surplus” minus foreign automakers’ producer surplus. Costs of abatement are negative when
a policy change results in lower carbon emissions but is welfare-positive even when disregarding carbon damages. Cost per
addditional EV is the ratio of ∆government spending to ∆new EVs registered.

x
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Figure 1: Section 30D Purchase Credit Eligibility 9/2/24, 10:38 AM

Page 1 of 1file:///Users/rkane/Documents/repos/EVTrade/descriptive/output/eligibility_by_model_slides.html

Eligibility group Models Pre-IRA 8/17/22 - 12/31/22 1/1/23 - 4/17/23 4/18/23 - Late 2023

Exclude if sales >
200k

Exclude if assembled
outside North
America

Re-include if sales >
200k; exclude if
MSRP > $55k/$80k

Exclude foreign
battery
minerals/components

Excluded Aug 2022

Audi (Q4 e-tron, Q8 e-tron); BMW (i4, iX); Hyundai
(Ioniq 5, Kona); Kia (EV6, Niro); Lexus (NX PHEV);
Mercedes-Benz (EQB); Nissan (ARIYA); Polestar
(Polestar 2); Porsche (Taycan); Subaru (Solterra);
Toyota (RAV4 PHEV, bZ4X); Volvo (C40, XC40, XC60
PHEV, XC90 PHEV)

$7,500

BMW (530e PHEV); Kia (Sorento PHEV, Sportage
PHEV); Toyota (Prius PHEV) $3,750 - $7,500

Included Jan 2023 Chevrolet (Bolt, Bolt EUV); Tesla (Model 3, Model Y) $7,500

Excluded/reduced
Apr 2023

Ford (E-Transit, Mustang Mach-E); Jeep (Grand
Cherokee PHEV, Wrangler PHEV); Rivian (R1S, R1T) $7,500 $3,750

Ford (Escape PHEV) $3,750 - $7,500 $3,750

Audi (Q5 PHEV); BMW (X5 PHEV); Nissan (Leaf) $7,500

Excluded Jan 2023 Lucid (Air); Mercedes-Benz (EQS) $7,500

Always included Chrysler (Pacifica PHEV); Ford (F-150 Lightning);
Volkswagen (ID.4) $7,500

Always excluded Tesla (Model S, Model X)

Notes: This figure shows which models are eligible for the IRA Section 30D purchase credit by time
period. The figure includes models averaging more than 300 sales per month in 2022 and 2023.
The shading intensity indicates the credit amount that the model is eligible for. The red, blue, and
orange colors indicate eligibility changes that we study in Section 5 below. This figure is inspired
by Figure 3 of Buckberg (2023). The final column header says “late 2023” because several vehicles
were retroactively made eligible in late 2023, and the Tesla Model X became eligible in late 2023
as its MSRP decreased.
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Figure 2: Monthly Registrations and Prices of Teslas and Other EVs

(a) Registrations

20

30

40

50

60

Jan 2022 Jul 2022 Jan 2023 Jul 2023

R
eg

is
tr

at
io

ns
 (

00
0s

)

Tesla

All other EVs

(b) Average Purchase Prices

50

55

60

65

Jan 2022 Jul 2022 Jan 2023 Jul 2023

P
ur

ch
as

e 
pr

ic
e 

($
00

0s
)

Eligibility

Tesla

All other EVs

Notes: Panel (a) presents monthly registrations of Teslas and other EVs. Panel (b) presents
price indexes constructed by computing the January 2023 weighted averages (weighting models by
average monthly sales in months when the model was available) for Tesla and non-Tesla EVs, and
then recursively adding the sales-weighted average changes for all models available in each previous
or subsequent month.
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Figure 3: Electric Vehicle Supply Constraints

(a) Average Days-to-Turn (Not Including Tesla)
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(b) Tesla Estimated Wait Times
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Notes: Panel (a) presents average days-to-turn, i.e., the average time that vehicles sold in that
month were available in the dealership’s inventory before being sold from Edmunds (2024). The
Edmunds data exclude Tesla. Panel (b) presents average delivery wait time reported on the Tesla
website (Tesla 2023; Tom Pritchard 2023; The Internet Archive 2023). Both panels present indexes
constructed by computing the January 2023 weighted average (weighting models by average monthly
sales in months when the model was available), and then recursively adding the sales-weighted
average change for all models available in each previous or subsequent month.
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Figure 4: Aggregate Electric Vehicle Market Trends

(a) Share of New Vehicle Registrations that Are Electric Vehicles
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Notes: Panel (a) presents the share of new vehicle registrations that are EVs. Panel (b) presents
the share of new vehicles registered that are assembled in the United States.
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Figure 5: Distribution of Negative Externalities Across Submodels

(a) Global SCC
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(b) Domestic SCC
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Notes: This figure shows the distribution of total negative externalities across submodels, weighting
submodels by registrations in July and August 2023. Carbon damages are evaluated at the global
SCC of $241 in panel (a), and at the domestic SCC of $28 in panel (b).
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Figure 6: Purchase Price Trends Associated with Eligibility Changes

(a) Trends by Eligibility Group
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Notes: Panel (a) presents purchase price indexes constructed by computing the January 2023
weighted averages for each eligibility group and then recursively adding the sales-weighted average
changes for all submodels available in each previous or subsequent month. Panel (b) presents the γer
coefficients and 95 percent confidence intervals from equation (3). Eligibility groups are described
in Figure 1. In both panels, we weight submodels by average monthly sales in months when the
submodel was available.
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Figure 7: Relative Lease Price Trends Associated with Eligibility Changes

(a) Trends by Eligibility Group
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Notes: Panel (a) presents lease price minus purchase price indexes constructed by computing the
January 2023 weighted averages for each eligibility group and then recursively adding the sales-
weighted average changes for all submodels available in each previous or subsequent month. Panel
(b) presents the γer coefficients and 95 percent confidence intervals from equation (3). Eligibility
groups are described in Figure 1. In both panels, we weight submodels by average monthly sales
in months when the submodel was available.
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Figure 8: Lease Share Trends Associated with Eligibility Changes

(a) Trends by Eligibility Group
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Notes: Panel (a) presents lease share indexes constructed by computing the January 2023 weighted
averages for each eligibility group and then recursively adding the sales-weighted average changes for
all submodels available in each previous or subsequent month. Panel (b) presents the γer coefficients
and 95 percent confidence intervals from equation (3). Eligibility groups are described in Figure 1.
In both panels, we weight submodels by average monthly sales in months when the submodel was
available.
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Figure 9: Heat Map of Second Choices by Vehicle Class
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Notes: This figure presents the conditional shares of vehicle class × powertrain second choices; the
left panel shows these second choice probabilities from the NVES data, while the right panel shows
the model-implied shares. The fact that 0% of EV Minivan buyers in the NVES select another EV
Minivan as a second choice arises because the NVES aggregates all trims of the Chyrsler Pacifica
PHEV (the only electric minivan available) with their gasoline counterparts for the second choice
survey. Since the minivan segment is a small share of vehicle sales overall, this minimally changes
our model fit statistics.
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Figure 10: Distribution of Social Marginal Cost Minus Price Across Submodels

(a) Global SCC
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(b) Domestic SCC
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Notes: This figure shows the distribution across submodels (both purchased and leased) of social
marginal cost minus price, weighting submodels by registrations in July and August 2023. Social
marginal cost is the inferred marginal production cost cj plus negative externality ϕj ; panel (a) com-
putes negative externalities at the global SCC, whereas panel (b) computes negative externalities
at the domestic SCC. Price is the unsubsidized market price pj .
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A Data Appendix

Our core panel dataset is comprised of data from Experian (quantities), Cox Automotive (lease

prices), and the California DMV (purchase prices), together with a collection of supplemental

sources.

The Experian data has complete national coverage of new vehicle sales, both purchases and

leases, aggregated to the monthly level. To clean these data, we first restrict to considering light-

duty vehicles, consider only vehicles purchased for personal use or leased, and exclude fuel cell

vehicles. Because vehicle quantities are reported at somewhat different levels of aggregation across

observations (e.g. combining similar trims some, but not all of the time), we aggregate to a “lowest

common denominator” definition of submodel, which is consistent across observations and across

time.

The Cox Automotive data has national coverage, but is not exhaustive as it depends on there

being a business relationship between Cox and the firms/dealerships. The dataset is at the transac-

tion level, which allows us to obtain VIN-level information (e.g. assembly location). Additionally,

Cox uniquely includes the details of lease contracts, surfacing down payments, monthly payment,

and duration. Because the Cox data also include purchase transactions, we are able to obtain

submodel×month-level purchase prices which, combined with lease terms, allow us to compute

lease prices. We clean these data by filtering out observations with implausible monthly payments

for the vehicles we consider (i.e. below $200 or above $1,500) and outlier lease durations (less than

12 months or more than 60 months).

The California DMV data has coverage only for California, and is provided in a sequence of

cross-sectional snapshots of currently-registered vehicles. The snapshots we use are from July 2023,

October 2023, and April 2024. The variables associated with a registration record include the prefix

of the vehicle identification number (VIN), self-reported price, vehicle make, series, model, model

year, date of the most recent registration, most recent odometer reading and reading date, year

and month of each ownership transfer, and an indicator for whether the vehicle is leased. The VIN

prefix is the first 11 digits, excluding the ninth (check digit).

To transform this sequence of snapshots into a single panel, we employ the following algorithm.

First, we check the odometer reading; if it is less than or equal to 250 miles, we use the corresponding

odometer reading date as the initial registration date.28 For vehicles with odometer readings that

are either missing or greater than 250 miles, we then check the latest registration date. Because we

observe the model year of the vehicle, we can check whether date is plausibly an initial registration

date (i.e. falls between July 1 of the year prior to the model year and April 1 of the year after the

model year). If it is, we use the most recent registration date as the initial registration date. If a

vehicle doesn’t satisfy our requirements for inferring initial registration date on the basis of odometer

or latest registration information, we assume we cannot identify the initial registration date for the

vehicle, and so drop it from our sample. In practice, 96 percent of initial registration dates in

28In California, the primary registration form for new vehicles (Form REG-343 ) requires the reporting of the
odometer reading “upon date of purchase in California”.
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our panel are derived from the first step, using odometer reading/reading date. The remaining

4 percent may be subject to some errors, as California’s requirement for annual re-registration of

a vehicle could confound successful identification of the initial registration date. For example, a

vehicle could be purchased in September of the year before its model year and be re-registered in

September of its model year; if this vehicle’s observation is also missing a valid odometer reading,

or if its ownership was transferred (and hence a new, higher odometer reading was recorded), it

would enter our panel as having been initially acquired in September of its model year. We check

that our findings are robust to using only the vehicles whose initial registration dates are inferred

from their odometer reading.

We check the trend of daily new registration over time based on two cross-sections. We find

a delay of roughly 45 days for all registration to appear in the DMV record; that is, the number

of observed registrations fall sharply relative to the trend within the 45 days prior to the date the

snapshot was taken. Given the possibility that later registrations overwrite earlier ones, we use the

earlier cross-section to approximate the initial registration date of earlier-registered vehicles. The

final dataset is constructed using the July 2023 cross-section for registrations between August 15,

2022 and April 30, 2023; the October 2023 cross-section for registrations between May 1 and August

30, 2023; and the April 2024 cross-section for registrations between September 1 and December 31,

2023.

In addition to these core data sources, we use the National Highway Traffic Safety Adminis-

tration (NHTSA)’s VIN decoder to append information on powertrain type (e.g. GV vs. PHEV

vs. BEV) and assembly location. Further combining vehicle names and model years with eligibility

information from FuelEconomy.gov, we generate a submodel×month panel, with information on

number of monthly registrations (including purchases and leases separately) from Experian, ve-

hicle characteristics including powertrain and assembly location, average recorded purchase price

from the California DMV, average lease price and lease price minus purchase price from Cox, and

credit eligibility. This final merge is achieved by leveraging the presence of VIN-prefix in both the

California DMV and Cox datasets, and through a manual crosswalk between vehicle names with

Experian.

For Tesla price data, we augment the above panel using the following sources. From Tesla’s

website, via the Internet Archive’s Wayback Machine, we obtain base configuration lease terms and

purchase prices for most months in our sample. For those which are inaccessible via the Wayback

Machine, we additionally collect price data from contemporaneous reporting courtesy (InsideEVs,

2024) and the enthusiast-run project Tesla Car Price History (Bautista, 2024). This allows us

to consistently compare lease prices and purchase prices for the base configuration of each model

across time.

Finally, we used new EV registration data from EV-Volumes to inform our dealership inventory

survey (Appendix A.2) and compute market shares to weight the resulting wait times. We also

used vehicle registration data from Texas to investigate the frequency of consumers exploiting the

“loophole within a loophole” as described in Appendix B.1. These registration data are not as
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straightforward as those from California’s DMV to convert into a panel in part due to a lack of an

explicit lease flag, but do feature full vehicle VINs and addresses. These features allow us to track

changes in ownership over time, which is crucial for identifying lease buyouts.

A.1 Externalities

This subsection provides additional detail on a few components of our estimates of each submodel’s

externalities.

CO2 and local air pollution emissions from driving. For EVs, we compute the damages

from generating electricity to charge the vehicles, using the regional short-run marginal emission

rates from Holland et al. (2016).29 To aggregate across geographies to the national level, we average

across zip codes weighting by each zip’s total vehicle miles traveled, following Holland et al. (2016),

and we average across states weighting by each state’s powertrain-specific new vehicle sales in

2023. Since EVs have higher market shares in states with cleaner electricity generation, the state-

by-powertrain weighting implies lower marginal damages from EVs than if we assumed that the

marginal EVs and GVs had the same sales everywhere.

For GVs, we compute the harms from tailpipe emissions. We construct CO2 emissions using

each submodel’s fuel economy rating. We compute submodel-specific local pollution emission factors

from US EPA (2024) test data, using submodel-specific certified emission rates for the vehicle’s full

useful life as in Jacobsen et al. (2023), and we again compute the weighted average marginal damage

across zip codes using marginal damage estimates for local pollutants from Holland et al. (2016).

We assume that 63 percent of PHEV miles traveled are on gasoline and 37 percent are on electricity,

following Plötz et al. (2020).

Accident externalities. Following Anderson and Auffhammer (2014), we estimate the ex-

pected increased mortality cost from accidents of each submodel relative to the lightest vehicle

available. The mortality cost is the product of the accident probability, the incremental death

probability from driving a heavier vehicle, and the value of a statistical life (VSL). We follow the

Anderson and Auffhammer (2014) assumptions for the first two parameters.

Positive fiscal externalities. For EVs, we use the utility-specific markups on residential

electricity above private marginal cost calculated by Borenstein and Bushnell (2022), weighting

utilities within a state by sales and weighting states by new EV sales in 2023. The resulting

weighted average markup is 12 cents per kWh. For GVs, we use federal and state gas taxes,

weighting states by new GV sales in 2023. The resulting weighted average gas tax is 64 cents per

gallon. A submodel’s total positive fiscal externality depends on those markup or tax amounts and

the submodel’s electricity use or fuel economy.

29Since new vehicles sold in 2023 will likely be on the road for over a decade, we could also consider estimates
of long-run marginal emission rates; this would increase the externality reduction benefit from EVs. Holland et al.
(2022) show that short-run marginal emission rates increased slightly from 2010–2019.
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A.2 Dealership Inventory Survey

Between July 7 and August 4, 2023, we conducted a survey targeting dealerships selling popular

EVs in a number of geographically diverse markets with relatively large EV adoption rates. We

collected responses from the West Coast (Los Angeles, San Diego, San Jose, and San Francisco),

East Coast (New York and Philadelphia), the Midwest (Minneapolis), and the South (Houston).

These are in addition to a brief pilot, whose results are unreported here, conducted in St. Louis in

early July prior to the other surveys.

We compiled a list, from EV-Volumes data, of the EV models that were most popular in 2022

and early 2023. Some vehicles were omitted due to having been discontinued by the time of our

survey, and others were omitted due to being largely or entirely sold direct-to-consumer (namely

Rivian and Tesla). RAs then searched for dealerships selling each make, and contacted them by

phone. For each model, they then asked

Hello, my name is and I’m interested in purchasing a [model name]. I would

be paying cash for the vehicle. When would be a feasible delivery time for the vehicle?

How much should I expect to pay? How about delivery times for your other electric or

plug-in hybrid vehicles?

The RAs then recorded this information for each of the EV models which the dealership in question

sold. If the model was not in stock up to two more dealerships were contacted in the city; our

analysis is conducted on the minimum wait time across contacted dealerships in the city. Additional

information concerning the exact trim and sales price were recorded, though are not directly used

here; we did not observe systematic markups relative to MSRP. In total, we recorded wait times

for a total of 681 dealership-model combinations.

For each dealership-model combination with non-zero wait time, we assign the midpoint of the

predicted window given as that dealership-model wait time. We then take the minimum of these

across cities to obtain a city-model dataset. These data are merged with EV-Volumes registration

records from July and August, and we compute the proportion of wait times that are zero days,

within 30 days, and within 60 days both weighted (by national market share) and unweighted.
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Figure A1: Cox Data Coverage Rate

(a) Cox Data Coverage Rate by Make
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(b) Cox Data Coverage Rate by State
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Notes: Panel (a) shows the ratio of new vehicle transactions in the Cox dealership data to nationwide
new vehicle registrations in the Experian data, for each make. Panel (b) shows the ratio of new
vehicle transactions in the Cox dealership data to state-level registrations from 2023.
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Figure A2: Availability by Month for Each Electric Vehicle Submodel
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Notes: This figure has one row for each EV submodel in the data, and one column for each month
of the sample. A cell is shaded if the submodel has more than 25 new registrations in that month.
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Figure A3: Phase-In and Phase-Out Periods by Submodel
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Notes: This figure presents registrations by submodel, with one line for each EV submodel in our
data; we arrange them into subplots to aid in seeing the dynamics of each series. Each panel
contains a group of 10 submodels, arranged by group in decreasing order of total registrations. Red
and blue lines represent phase-in and phase-out periods at the beginning and end of a submodel’s
life. To define these periods, we construct q̄j as submodel j’s sample average monthly registrations
in months with non-zero registrations. Phase-in periods are consecutive months beginning with
zero registrations and ending when registrations first exceed q̄j/2. Analogously, phase-out periods
are consecutive months ending when registrations reach zero and beginning when registrations last
exceed q̄j/2.
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B Descriptive Facts Appendix

Figure A4: Income Distributions for EV Buyers in 2022/2023 and 30D Tax Credit
Claimants in 2021
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Notes: The red line shows the cumulative distribution function (CDF) of Adjusted Gross Income
(AGI) for taxpayers claiming the Section 30D credit for tax year 2021, using data from the IRS
Statistics of Income (2023). The grey line shows the CDF of self-reported household income for
people who bought new EVs in 2022 and 2023, using data from the National Vehicle Experience
Survey. The IRA requires that to be eligible to claim the credit in 2023 and after, individual buyers
must have AGI below $300,000 for married couples filing jointly, $225,000 for household heads, or
$150,000 for all other taxpayers. The vertical lines reflect those income thresholds.
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Figure A5: Example of Promotional Material Advertising $7,500 Lease Bonus

Notes: Representative screenshot showing $7,500 promotion on EV leases. Observed on the
Mercedes-Benz website, August 2023.

Table A1: Variation in Externalities by Powertrain

Standard
deviation
($000s)

Coefficient
of variation

Interdecile ratio

EVs GVs EVs GVs EVs GVs

Panel (a): Global SCC

Total negative externalities 4.24 5.05 0.25 0.25 1.08 1.07

[0.031] [0.946] [−0.02, 0.01]

Carbon damages 2.13 3.05 0.20 0.19 1.05 1.05

[0.000] [0.600] [−0.01, 0.01]

SMC minus price 4.24 5.05 0.25 0.25 1.08 1.07

[0.031] [0.947] [−0.02, 0.01]

Panel (b): Domestic SCC

Total negative externalities 2.92 2.98 0.39 0.50 1.11 1.17

[0.830] [0.014] [−0.09, −0.03]

Carbon damages 0.25 0.35 0.20 0.19 1.07 1.06

[0.000] [0.600] [−0.01, 0.02]

SMC minus price 2.92 2.98 0.39 0.50 1.11 1.17

[0.830] [0.014] [−0.09, −0.03]

Notes: All quantities are computed at the submodel level, unweighted. Interdecile ratio is the
90th sample percentile divided by the 10th sample percentile of log externalities. Bracketed values
in the Coefficient of variation column are p-values for the difference in coefficients of variation,
computed following Feltz and Miller (1996); bracketed values in the Interdecile ratio column are
bootstrapped 95% confidence intervals for the difference in interdecile ratio.
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B.1 Texas Registration Data Analysis

To examine the frequency with which EV buyers took advantage of the “loophole within a loophole”

(that is, first leasing a vehicle ineligible for the purchase credit, obtaining advantageous lease terms

due to the leasing loophole, then proceeding to buy out the lease), we combined two data sources

with VIN-level information. The first is Cox Automotive’s data on new vehicle transactions, which

allows us to identify VINs associated with leases. The second is Texas registration data, which

allows us to track the same VIN across time (as we can observe repeated registrations for the same

VIN). This is not possible using the California data, which is provided at the VIN-prefix level.

Without the VIN to identify a particular vehicle across time, buyouts can’t be identified. On the

other hand, the Cox data alone doesn’t have information on re-registrations of vehicles or of lease

buyouts directly. We also note that, while the Texas market is not as large as California’s, it is the

second largest in the country and makes up a substantial share of the US market.

Combining the Cox and Texas registration data, we computed the early buyout rate in Texas

by a) filtering to vehicles which were recorded as leased in the Cox data, and b) identifying vehicles

who were re-registered to a different address within three months of their initial registration. The

overall levels of estimated early buyouts remained low among EVs and GVs both before and after

the new lease credit rules went into effect. In late 2022, EVs and GVs had early buyout rates of

around half a percent of leases, while in early 2023 EVs had an early buyout rate of around 1.4%.

The estimated GV early buyout rate remained unchanged.

C Event Study Appendix

C.1 Event Study Regression Tables

Table A2 presents the regression estimates used in the calibration of the empirical model in Section

6. Table A3 presents regression estimates documenting the lack of substantial price changes after

EVs lost eligibility in August of 2022 and April of 2023.
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Table A2: Estimated Lease Moments

Model: (1) (2) (3)
Dependent variables: Leasing share (%) Lease price relative to purchase price ($000s)

Variables
Excluded Aug 2022 × July-August 2023 39.31 -5.677 -4.844

(3.972) (0.8275) (1.142)

Fixed effects
Submodel Yes Yes Yes
Year-month Yes Yes Yes

Fit statistics
R2 0.91635 0.72685 0.76565
Observations 3,988 3,165 1,903

Clustered (model) standard-errors in parentheses
Notes: This table presents regression results for the group of EVs which were excluded from 30D
eligibility in August of 2022. It compares outcomes for July-August of 2023 with those from late
2022; columns 1 and 2 compare against the fourth quarter of 2022, whereas column 3 compares
against December 2022 only. The regressions are weighted at the submodel level according to
average registrations during the months the submodel was available, and standard errors are
clustered at the model level.

Table A3: Estimated Purchase Price Effects

Model: (1)
Dependent variable: Purchase price ($000s)

Variables
Excluded Aug 2022 or
Excluded/Reduced Apr 2023 × July-August 2023

0.3724

(0.5065)

Fixed effects
Submodel Yes
Year-month Yes

Fit statistics
R2 0.98994
Observations 16,047

Clustered (model) standard-errors in parentheses
Notes: This table presents regression results for the group of EVs which were excluded from 30D
eligibility in August of 2022 and in either excluded from 30D or who experienced reductions in
purchase credits in April of 2023. The pre-period is defined as the three months prior to the
eligibility change (considered to be September of 2022 and May of 2023, respectively); the control
group is all GVs. The regression is weighted at the submodel level according to average
registrations during the months the submodel was available, and standard errors are clustered at
the model level.
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Figure A6: Changes in Relative Lease Prices and Lease Shares from October-December
2022 to July-August 2023 by Make
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Notes: This figure presents the differences (from July-August 2023 vs. October-December 2022) in
relative lease prices and lease shares, for the top-10 selling EV brands.
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C.2 Doubly-Robust Event Studies

This appendix presents “doubly robust” estimates where the GV control group is reweighted to

match the EV pre-IRA average price. We compute weights with entropy balancing (Hainmueller,

2012). This method computes weights such that the reweighted sample matches a set of target

moments, while maintaining maximal “closeness” (in an entropy sense) to a set of researcher-

defined initial weights. In our case, these initial weights are the monthly average registrations of

each GV, and the targeted moment will be average pre-IRA purchase price. Since EVs have a

higher average price, this will have the effect of upweighting more expensive GVs.

Because we can only compute new weights for GVs which are present in the pre-period sample,

we lose a little less than 5 percent of overall registrations after switching to these weights. To ensure

that the aggregate EV-GV balance is approximately the same between the primary specification

and this alternative specification, the entropy-balanced weights are normalized to sum to one, then

multiplied by the monthly average registrations across all GVs.

Appendix Figures A7–A9 present the reweighted event study estimates.

Figure A7: Purchase Price Event Study with Reweighted Controls
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Notes: This figure presents the γer coefficients and 95 percent confidence intervals from equation (3).
Eligibility groups are described in Figure 1. This parallels Figure 6, except that we also re-weight
the control observations (GVs) to match the average pre-IRA EV price.
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Figure A8: Lease Price Event Study with Reweighted Controls
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Notes: This figure presents the γer coefficients and 95 percent confidence intervals from equation (3).
Eligibility groups are described in Figure 1. This parallels Figure 7, except that we also re-weight
the control observations (GVs) to match the average pre-IRA EV price.

Figure A9: Lease Share Event Study with Reweighted Controls
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Notes: This figure presents the γer coefficients and 95 percent confidence intervals from equation (3).
Eligibility groups are described in Figure 1. This parallels Figure 8, except that we also re-weight
the control observations (GVs) to match the average pre-IRA EV price.

C.3 Event Studies with Registration Quantities

This appendix presents event studies of changes in total registrations (including both purchases

and leases) around the 30D vehicle eligibility changes. The IRA should affect total registrations in
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several ways. First, changes in vehicle eligibility for Section 30D credits should shift demand among

income-eligible consumers. Second, the January 2023 income eligibility restriction for Section 30D

credits should reduce EV demand among consumers who do not want to lease. Third, the January

2023 availability of EV lease credits under 45W should increase overall EV demand.

Appendix Figure A10 presents the fixed-weight indexes and event study estimates. The figures

illustrate substantial market trends that predate, and are thus likely unrelated to, changes in EV

credit eligibility. The Excluded August 2022 group saw a significant registration decrease in July

and August 2022 (before they lost 30D eligibility), driven by decreases for Hyundai and Kia. The

Included January 2023 group saw a steady increase in 2022 and 2023 (before they regained 30D

eligibility), as Tesla demand grew steadily. The Excluded/reduced April 2023 group saw decreases

in registrations in the first few months of 2023 (again, before they lost 30D eligibility).

Comparing against the final month before the eligibility change (month −1 on the x-axis), the

figures show no statistically detectable evidence of responses to credit eligibility. For the Excluded

August 2022 group, the 95 percent confidence intervals rule out registration decreases of more

than about 20 percent. For the Included January 2023 group, the confidence intervals rule out

registration increases of more than about 20-30 percent. For the Excluded/Reduced April 2023

group, the confidence intervals rule out registration decreases of more than about 20-30 percent in

the ensuing four months. However, especially given the evidence of other market trends before the

eligibility changes, we do not know what would have happened but for those eligibility changes.
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Figure A10: Registration Trends Associated with Eligibility Changes
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Notes: Panel (a) presents ln(registration) indexes constructed by computing the January 2023
weighted averages for each eligibility group and then recursively adding the sales-weighted average
changes for all submodels available in each previous or subsequent month. Panel (b) presents the γer
coefficients and 95 percent confidence intervals from equation (3). Eligibility groups are described
in Figure 1. In both panels, we weight submodels by average monthly sales in months when the
submodel was available.
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D Equilibrium Model

D.1 Quantity Demanded and Consumer Surplus

Figure A11: Nested Logit Structure
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There are M consumers in the market indexed by i. Each consumer receives indirect utility from

choice j with price pj and demand subsidy τj equal to

Uij = ξj − α (pj − τj) + ϵij

where ξj is a mean consumption utility common to all consumers and ϵij is an idiosyncratic

preference unique to each consumer distributed standard type-1 extreme value (mean zero and

unit scale). In the nested logit, each ϵij draw is independent across individuals but, for a given

individual, is correlated across nests as in equation (5). We normalize the common part of utility of

the outside option to zero, so Ui0 = ϵi0. To derive the market shares of each product, we first define

the following inclusive values, which represent the expected utility of a purchase option within a

nest conditional on selecting that nest

Ik = (1− σk) ln
∑
j∈Jk

exp

(
ξj − α (pj − τj)

1− σk

)

Ic = (1− σc) ln
∑
k∈Kc

exp

(
Ik

1− σc

)
(15)

Ig = (1− σg) ln
∑
c∈Cg

exp

(
Ic

1− σg

)
I = ln (1 + exp IEV + exp IGV )
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In the above notation, J is the set of (1361) options available to purchase or lease; Jk is the

partition of J corresponding to submodel k in the set of (757) submodels K; Kc is the partition of

K corresponding to class c in the set of (9) classes C; and Cg is the partition of C corresponding to

powertrain g in the set of powertrains (i.e., the top-level nesting: GV, EV, or outside option). Our

normalization of the mean outside option value to zero and placement of the outside option in a

nest all by itself implies that in each of the first three lines, I0 = 0. This is the source of the 1 in

the final inclusive value.

Unconditional choice probabilities for j are given by the product of conditional probabilities

within a nest and the overall choice probability of powertrain, g:

sj =
exp

(
ξj−α(pj−τj)

1−σk

)
exp

(
Ik(j)
1−σk

)
︸ ︷︷ ︸

sj|k(j)

×
exp

(
Ik(j)
1−σc

)
exp

(
Ic(j)
1−σc

)
︸ ︷︷ ︸

sk(j)|c(j)

×
exp

(
Ic(j)
1−σg

)
exp

(
Ig(j)
1−σg

)
︸ ︷︷ ︸

sc(j)|g(j)

×
exp Ig(j)

exp I︸ ︷︷ ︸
sg(j)

(16)

McFadden (1978) provides a full derivation given the CDF of ϵij . Total registrations come

from multiplying choice probabilities by the number of consumers, qj = sj ×M . The substitution

between any two choices,j and r, given by
∂qj
∂pr

in equation (7), can be derived using equations (15)

and (16).

In the nested logit extension to the Small and Rosen (1981) log-sum consumer surplus formula,

total consumer surplus is given by

CS =
I

α
(17)

D.2 Estimation

The demand-side parameters are estimated using a nested fixed-point approach: the outer loop

uses a gradient-based optimization over
{
α, σk, σc, σg

}
to match our moments while the inner loop

solves for ξ using the Berry (1994) contraction mapping to match market shares. The contraction

mapping is adapted to the nested logit using Grigolon and Verboven (2014), who show that the

contraction must be dampened by 1−max
{
σk, σc, σg

}
ξ
(t+1)
j ←[ ξ(t)j +

(
1−max

{
σk, σc, σg

}) [
log sobsj − log s

(t)
j

]
(18)

where sobsj are observed market shares in the data and s
(n)
j are implied market shares in the

model given current values of ξ(n)
j

, prices, and the outer loop parameters. In the outer loop, we

minimize the sum-squared relative deviation between our four model moments, mn(·), and our data

moments, mn, n = 1, ..., 4 ∑
n

(
mn(α, σ

k, σc, σg)−mn

mn

)2

(19)

The four moments we match are a market share-weighted model-level own-price demand elas-

ticity, a simulated increase in lease prices for the subset of vehicles excluded from credits in August
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2022, the share of EV owners who choose another EV as a second choice if their first choice was

unavailable, and the share of EV owners who would choose another EV in the same vehicle segment

as their first choice if their first choice was unavailable.

Since our model is at the level of a submodel-by-purchase option, while the moment elasticity

is aggregated to the model-level, we simulate the model-level elasticity by raising and lowering

prices by 0.5% and taking the average percent change in registrations as the central difference

approximation to the elasticity. We do this for every model and take a registration-weighted

average. For simulating the lease share change, we raise the price of the purchase options for the

August 2022 excluded group and calculate the new choice probabilities for each option. We compute

the change in the share of registrations for each submodel that are leases and then compare the

registration-weighted average change in lease shares across submodels.

To calculate the second choice moments in the model, we simulate removing each submodel k

from the choice set and compute the new choice probabilities for all remaining products. Define

sr\k as the market share of submodel r when k is unavailable. The second choice share is defined

by the ratio
sr\k − sr

sk
(20)

since any new registrations of r when k is no longer available must be from consumers who

originally had k but then had r as their next best option. The NVES only surveys consumers

who registered a new vehicle and we can only compute second choice shares among respondents

who provided one, so in practice we actually compute sr\k,0 for r, k = 1, ..., J .30 The share of EV

consumers whose second choice is also an EV is then given by

DEV→EV =

∑
k∈EV sk\0

(∑
r∈EV sr\k,0

)∑
k∈EV sk\0

(21)

Similarly, the own-class share among EV owners is given by a weighted average across classes,

c, within EVs:

DEV−class→EV−class =

∑
c∈EV sc\0

(∑
k∈c sk\0(

∑
r∈c sr\k,0)∑

k∈c sk\0

)
∑

c∈EV sc\0
(22)

Since we have as many moments as parameters to estimate, we match the targeted moments

exactly.

Estimation of the supply side consists of inverting the Nash-Bertrand first-order condition in

equation (9). In particular, stacking the system of J equations gives the markup equation

µ = −Ω̃−1
q (23)

where µ is a J-vector of markups, µj = pj − cj + κj and Ω̃ = Ω⊙H is the matrix of demand

derivatives multiplied (Hadamard product) by the firm ownership matrix. That is, if f(j) returns

30The proportional substitution in the nested logit to the outside option implies sk\0 = sk/(1 − s0). Over half of
respondents (58.5%) did not consider a second choice.
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the identify of the firm that produces j, then each j, r element is given by
[
Ω̃jr

]
= ∂qr

∂τj
× 1f(r)=f(j).

Given, the estimated demand parameters, we can compute Ω̃ and q to back out markups and —

given prices and subsidies — marginal costs.

To compute alternative price equilibria in our counterfactuals that change the policy vectors τ

and κ, we follow the standard approach found in Morrow and Skerlos (2011) and solve a fixed-point

problem closely related to equation (23) and which coincides at an equilibrium point.

Figure A12: Distribution of Model-Implied Markups for EVs and GVs
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Notes: This figure presents the distribution across submodels of markups implied by firms’ first-
order condition in equation (9), weighting submodels by registrations in July and August 2023.

D.3 Sensitivity Analysis

The tables below report sensitivity to assumptions on the MCPF, SCC, and demand elasticity.
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Table A4: Counterfactual Simulation Results: Sensitivity Analysis (MCPF and SCC)

(1) (2) (3)

IRA

US-optimal
uniform EV
subsidy with

30D restrictions

US-optimal
differentiated EV

subsidy with

30D restrictions

Panel (a): Marginal Cost of Public Funds = 1.4, Social Cost of Carbon = $28

1. Mean EV subsidy $7,180 $1,072 $2,520
2. ∆Global negative externalities 0.52 0.07 -0.29

3. ∆Global surplus -3.65 -0.13 -0.11

4. ∆US total surplus (global SCC) -2.84 0.04 0.30

5. Cost per additional EV ($000s/EV) 32.5 24.6 34.9

6. US MVPF (global SCC) 0.73 1.05 1.14

Panel (b): Marginal Cost of Public Funds = 1.4, Social Cost of Carbon = $241

1. Mean EV subsidy $7,180 $3,058 $5,449
2. ∆Global negative externalities -0.87 -0.19 -1.38

3. ∆Global surplus -2.26 -0.20 0.05

4. ∆US total surplus (global SCC) -1.45 0.30 0.90

5. Cost per additional EV ($000s/EV) 32.5 26.6 36.1

6. US MVPF (global SCC) 0.86 1.11 1.17

Panel (c): Social Cost of Carbon = $100

1. Mean EV subsidy $7,180 $7,450 $10,649
2. ∆Global negative externalities 0.04 0.24 -1.00

3. ∆Global surplus -0.23 -0.01 0.46

4. ∆US total surplus (global SCC) 0.59 1.33 2.36

5. Cost per additional EV ($000s/EV) 23.2 22.2 27.8

6. US MVPF (global SCC) 1.08 1.20 1.22

Panel (d): Social Cost of Carbon = $200

1. Mean EV subsidy $7,180 $9,029 $13,231
2. ∆Global negative externalities -0.61 -0.42 -2.66

3. ∆Global surplus 0.42 0.30 1.15

4. ∆US total surplus (global SCC) 1.24 1.98 3.56

5. Cost per additional EV ($000s/EV) 23.2 23.3 29.8

6. US MVPF (global SCC) 1.17 1.22 1.23

Panel (e): Social Cost of Carbon = $241

1. Mean EV subsidy $7,180 $9,693 $14,331
2. ∆Global negative externalities -0.87 -0.78 -3.59

3. ∆Global surplus 0.69 0.47 1.52

4. ∆US total surplus (global SCC) 1.50 2.29 4.15

5. Cost per additional EV ($000s/EV) 23.2 23.8 30.7

6. US MVPF (global SCC) 1.20 1.22 1.24
Notes: This table presents sensitivity analysis for counterfactual simulation results presented in Tables 6 and 7. All results
are relative to the scenario with no EV credits, as in Table 7. For each scenario under consideration, we simulate for column
2 the uniform EV subsidy, subject to Section 30D trade restrictions, that maximizes US total surplus and, in column 3, the
choice-specific differentiated EV subsidy that maximizes US total surplus. The defaults are an MCPF of 1 and an SCC of $241.
Mean and standard deviation of subsidies are computed only on EVs which are eligible to receive subsidies, namely vehicles
already eligible under the IRA. “US total surplus” equals “[global] total surplus” minus foreign automakers’ producer surplus.
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Table A5: Counterfactual Simulation Results: Sensitivity Analysis (Elasticity and SCC)

(1) (2) (3)

IRA

US-optimal
uniform EV
subsidy with

30D restrictions

US-optimal
differentiated EV

subsidy with

30D restrictions

Panel (a): Model-Level Elasticity = -4, Social Cost of Carbon = $241

1. Mean EV subsidy $7,180 $12,741 $17,607
2. ∆Global negative externalities -0.69 -0.91 -3.40

3. ∆Global surplus 0.95 0.70 1.64

4. ∆US total surplus (global SCC) 1.80 3.26 5.18

5. Cost per additional EV ($000s/EV) 29.5 31.6 39.3

6. US MVPF (global SCC) 1.24 1.22 1.23

Panel (b): Model-Level Elasticity = -4, Social Cost of Carbon = $28

1. Mean EV subsidy $7,180 $9,285 $12,198
2. ∆Global negative externalities 0.40 0.64 -0.08

3. ∆Global surplus -0.15 -0.08 0.17

4. ∆US total surplus (global SCC) 0.71 1.70 2.60

5. Cost per additional EV ($000s/EV) 29.5 29.2 34.8

6. US MVPF (global SCC) 1.10 1.19 1.20
Notes: This table presents sensitivity analysis for counterfactual simulation results presented in Tables 6 and 7. All results
are relative to the scenario with no EV credits, as in Table 7. For each scenario under consideration, we simulate for column
2 the uniform EV subsidy, subject to Section 30D trade restrictions, that maximizes US total surplus and, in column 3, the
choice-specific differentiated EV subsidy that maximizes US total surplus. The defaults are an MCPF of 1 and an SCC of $241.
Mean and standard deviation of subsidies are computed only on EVs which are eligible to receive subsidies, namely vehicles
already eligible under the IRA. “US total surplus” equals “[global] total surplus” minus foreign automakers’ producer surplus.

Table A6: Decomposition of Second-Best Uniform Subsidies

MCPF = 1.0,

SCC = $28
MCPF = 1.4,

SCC = $28
MCPF = 1.0,

SCC = $241
MCPF = 1.4,

SCC = $241

Price distortion $2,268 $1,431 -$6,562 -$4,884

Indirect substitution $892 $494 $13,293 $9,051

Subtotal $3,160 $1,925 $6,731 $4,167

Profit shifting $3,195 $2,572 $2,961 $2,462

Tax distortion – -$3,425 – -$3,570

Uniform subsidy $6,355 $1,072 $9,693 $3,058
Notes: This table presents the decomposition of second-best uniform subsidies for a US social planner under given values of
the marginal cost of public funds and social cost of carbon. Each component corresponds to the respective term in proposition
2, using equation (38) in the appendix for the more general case of an MCPF greater than one. The combined environmental
and markup components sum to the subtotal displayed in row 3. Column 1 corresponds to the uniform subsidy calculated in
Table 7. Columns (2), (3), and (4) correspond to uniform subsidies calculated in Table A4 under, respectively, panels (a), (e),
and (b). The decomposition was calculated by numerically approximating the derivatives in equation (38) at the subsidy value.
Note how the price distortion terms (row 1) relates to the distribution of price distortions in Figure 10, panels (a) and (b):
under a global social cost of carbon, the price distortion alone implies a tax, whereas under a domestic social cost of carbon,
the price distortion alone implies a subsidy.
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E Analytical Model Appendix

Recall CS is consumer surplus, PS =
∑

j qjµj is firm profits, G = η
∑

j qj(τj + κj) is government

spending under an assumed MCPF, and E =
∑

j qjϕj is negative externalities. As we discuss in

the main text, since physical incidence is independent of economic incidence, τj and κj are perfect

substitutes and there are infinite combinations of the two that yield the same welfare. We provide

results fixing κj = 0.

E.1 First-Best

To derive the total surplus-maximizing subsidies for the global planner, we take the derivative of

W in equation (10) with respect to arbitrary good j = 1:

[τ1] :
∂W

∂τ1
=

∂CS

∂τ1
+

∂PS

∂τ1
− ∂G

∂τ1
− ∂E

∂τ1
= 0 (24)

= q1 −
∑
j

qj
∂pj
∂τ1︸ ︷︷ ︸

∂CS
∂τ1

+
∑
j

∂qj
∂τ1

µj +
∑
j

qj
∂µj

∂τ1︸ ︷︷ ︸
∂PS
∂τ1

− η
∑
j

∂qj
∂τ1

τj − ηq1︸ ︷︷ ︸
∂G
∂τ1

−
∑
j

∂qj
∂τ1

ϕj︸ ︷︷ ︸
∂E
∂τ1

= 0,

where the first term of the second line is from an Envelope condition. Firm markups are defined

by pj = µj + cj , so dpj = dµj given constant marginal costs. Using this and cancelling terms gives

η
∑
j

∂qj
∂τ1

τj =
∑
j

∂qj
∂τ1

µj −
∑
j

∂qj
∂τ1

ϕj − (η − 1)q1, (25)

where the last term comes from the revenue-raising cost of subsidies due to the MCPF. In partic-

ular, it represents the marginal cost of raising funds at the current subsidy level that arises from

inframarginal takeup of q1. Doing this for all goods gives a system of equations whose solution is

ητFB
j = µj︸︷︷︸

markup

− ϕj︸︷︷︸
negative externality

− (η − 1)qj︸ ︷︷ ︸
tax distortion

. (26)

With η = 1, this becomes the standard first-best taxation result τFB
j = µj − ϕj . With η ̸= 1,

the planner equates the total fiscal cost of the per vehicle subsidy, η×τFB
j , with the total distortion

in the economy arising from unpriced externalities and transfers.

E.2 Second Best Differentiated Subsidy

This subsection provides the derivation of Proposition 1, the second best differentiated subsidy

for a subset of goods S. We allow the social planner to put no weight on some firms’ profits, for
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example a US planner that prioritizes domestic firms. This nests the global planner solution when

all profit changes are internalized.

Taking the derivative of WUS with respect to an arbitrary good, j = 1, in S, and denoting the

set of firms whose profits do not contribute to welfare as For:

[τ1] :
∂WUS

∂τ1
= q1 −

∑
j

qj
∂pj
∂τ1︸ ︷︷ ︸

∂CS
∂τ1

+
∑
j

∂qj
∂τ1

µj +
∑
j

qj
∂µj

∂τ1︸ ︷︷ ︸
∂PS
∂τ1

(27)

− η
∑
j∈S

∂qj
∂τ1

τj − ηq1︸ ︷︷ ︸
∂G
∂τ1

−
∑
j

∂qj
∂τ1

ϕj︸ ︷︷ ︸
∂E
∂τ1

−
∑

j∈For

∂πj
∂τ1︸ ︷︷ ︸

∂PSFor

∂τ1

= 0

Canceling terms as in Section E.1 gives

η
∑
j∈S

∂qj
∂τ1

τj =
∑
j

∂qj
∂τ1

µj −
∑
j

∂qj
∂τ1

ϕj −
∑

j∈For

∂πj
∂τ1
− (η − 1)q1. (28)

Notice that through the functional form of indirect utility, demand derivatives with respect

to subsidies are the negative of derivatives with respect to prices,
∂sj
∂τr

= − ∂sj
∂pr

. If we partition the

sums between S and \S, combine terms, and substitute for price derivatives of the opposite sign,

we arrive at

η
∑
j∈S

∂qj
∂p1

τj =
∑
j∈S

∂qj
∂p1

(µj − ϕj) +
∑
j∈\S

∂qj
∂p1

(µj − ϕj) +
∑

j∈For

∂πj
∂τ1

+ (η − 1)q1. (29)

Each choice in S yields a first-order condition. By expressing the sums as dot products of

vectors and then stacking these S equations, we get the following linear system in matrix notation

where τS is an S × 1 vector of optimal differentiated subsidies

ηΩ̃SτS = ΩS (µS − ϕS) +Ω\S

(
µ\S − ϕ\S

)
+mFor + (η − 1)qS (30)

Here, Ω is the (J + 1) × (J + 1) matrix of demand derivatives with representative element

[Ωjr] =
∂qr
∂pj

, and the S×S submatrix ΩS contains all elements with j ∈ S, r ∈ S. The S×(J+1−S)
submatrix Ω\S contains all elements with j ∈ S, r ∈ \S. Additionally, mFor is the vector of profit

impacts on foreign firms corresponding to the final term in equation (29).

Multiplying through by the inverse of ΩS gives the optimal second-best differentiated subsidy

τSB
S =

1

η
(µS − ϕS)︸ ︷︷ ︸

price distortion

+
1

η
Ω−1

S Ω\S

(
µ\S − ϕ\S

)
︸ ︷︷ ︸

indirect substitution

+
1

η
Ω−1

S mFor︸ ︷︷ ︸
profit shifting

+
(η − 1)

η
Ω−1

S qS︸ ︷︷ ︸
tax distortion

(31)

Intuitively, the second-best differentiated subsidy deviates from the first-best by the amount

of diversion (or “leakage”) from the untargeted set of choices and to foreign firms’ profits.
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To derive an expression for mFor, we need to know
∂µj

∂τr
, since the change in profits

∂πj

∂τr
=

∂qj
∂τr

µj + qj
∂µj

∂τr
is a combination of consumers’ demand response and firms’ markup response. The

full matrix of
∂πj

∂τr
is the Jacobian of profits with respect to subsidies. In Appendix D we show that

the solution to the Nash-Bertrand pricing game is determined by the linear system

q + Ω̃µ = 0 (32)

where Ω̃ is the Jacobian matrix of demand derivatives but modified to contain zeros whenever

a firm does not own products j and r. That is, Ω̃ = Ω⊙H, where H is the firm product-ownership

matrix (⊙ is the Hadamard product). We can pass the derivative with respect to τ through to

equation (32) to get,

Jµ(τ ) = −Ω̃
−1 (

HΩ̃(τ )µ−Ω
)

(33)

where J is the Jacobian and H is the (three-dimensional) Hessian with element
[
HΩ̃(τ )rjk

]
=

∂2qj
∂τr∂pk

. While tedious to derive for the nested logit, the Hessian of demand with respect to prices

has a closed form.31 The challenge is in getting an expression for the term in parenthesis. One can

show that the (r, j)-th element of HΩ̃(τ )µ−Ω, with product j belonging to firm f , is given by ∑
k∈Jf(j)

∂2qj
∂τr∂pk

µk

− ∂qj
∂pr

 .

After being premultiplied by −Ω̃−1
, each element of the resulting matrix corresponds to

∂µj

∂τr
.

This can be used to construct mFor using all j ∈ For, r ∈ S.

E.3 Second Best Uniform Subsidy

This subsection provides the derivation of Proposition 2, the second-best uniform subsidy which

imposes the restriction that the subsidy is equal for all choices in S. We proceed in a similar fashion

to Section E.2. Taking the derivative of WUS with respect to the scalar value τ , which changes the

subsidy level for all choices in S:
31Starting from equation (7), one makes extensive use of the fact that the nested logit is a complete partition of all

options into separate nests. The first implication of this fact is that conditional shares take the form sr|g(j) =
sr

sg(j)
,

sr|c(j) =
sr

sc(j)
, and sr|k(j) =

sr
sk(j)

. The second implication is that unconditional nest shares simply aggregate over their

member options, so sg(j) =
∑

ℓ∈J sℓδg(ℓ),g(j), sc(j) =
∑

ℓ∈J sℓδc(ℓ),c(j), and sk(j) =
∑

ℓ∈J sℓδk(ℓ),k(j). Substituting in
these expressions allows one to express the Hessian purely as a function of demand derivatives, membership indicators,
and the demand parameters.
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[τ ] :
dWUS

dτ
=

∑
j∈S

qj −
∑
j

qj
dpj
dτ︸ ︷︷ ︸

dCS
dτ

+
∑
j

dqj
dτ

µj +
∑
j

qj
dµj

dτ︸ ︷︷ ︸
dPS
dτ

− η
∑
j∈S

dqj
dτ

τSB,U − η
∑
j∈S

qj︸ ︷︷ ︸
dG
dτ

−
∑
j

dqj
dτ

ϕj︸ ︷︷ ︸
dE
dτ

−
∑

j∈For

dπj
dτ︸ ︷︷ ︸

dPSFor

dτ

= 0 (34)

Cancelling terms and rearranging gives

η
∑
j∈S

dqj
dτ

τSB,U =
∑
j

dqj
dτ

µj −
∑
j

dqj
dτ

ϕj −
∑

j∈For

dπj
dτ
− (η − 1)

∑
j∈S

qj . (35)

Separating sums by S and \S and combining terms gives

η
∑
j∈S

dqj
dτ

τSB,U =
∑
j∈S

dqj
dτ

(µj − ϕj) +
∑
j∈\S

dqj
dτ

(µj − ϕj)−
∑

j∈For

dπj
dτ
− (η − 1)

∑
j∈S

qj . (36)

Dividing through gives

τSB,U =

∑
j∈S

dqj
dτ (µj − ϕj)

η
∑

j∈S
dqj
dτ

+

∑
j∈\S

dqj
dτ (µj − ϕj)

η
∑

j∈S
dqj
dτ

−
∑

j∈For
dπj

dτ

η
∑

j∈S
dqj
dτ

−
(η − 1)

∑
j∈S qj

η
∑

j∈S
dqj
dτ

(37)

Unit demand implies
∑

j∈S
dqj
dτ = −

∑
j∈\S

dqj
dτ . This simplifies to equation (14) when η = 1,

but takes the more general form:

τSB,U =
1

η

(
µ̄S − ϕ̄S

)
︸ ︷︷ ︸
price distortion

− 1

η

(
µ̄\S − ϕ̄\S

)
︸ ︷︷ ︸

indirect substitution

−
∑

j∈For
dπj

dτ

η
∑

j∈S
dqj
dτ︸ ︷︷ ︸

profit shifting

−
(η − 1)

∑
j∈S qj

η
∑

j∈S
dqj
dτ︸ ︷︷ ︸

tax distortion

(38)

Each of the first two terms are demand-response weighted-averages of the unpriced externality. The

third term is the marginal profit shifted to foreign firms per marginal vehicle sold evaluated at the

level of subsidy. The final term is the revenue-raising cost of the marginal transfer under an MCPF

different than one.
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